Suppr超能文献

一种基于两阶段规则约束的无种子区域生长方法,用于 MRI 中的下颌体分割。

A two-stage rule-constrained seedless region growing approach for mandibular body segmentation in MRI.

机构信息

NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore,

出版信息

Int J Comput Assist Radiol Surg. 2013 Sep;8(5):723-32. doi: 10.1007/s11548-012-0806-2. Epub 2013 Feb 9.

Abstract

PURPOSE

Extraction of the mandible from 3D volumetric images is frequently required for surgical planning and evaluation. Image segmentation from MRI is more complex than CT due to lower bony signal-to-noise. An automated method to extract the human mandible body shape from magnetic resonance (MR) images of the head was developed and tested.

METHODS

Anonymous MR images data sets of the head from 12 subjects were subjected to a two-stage rule-constrained region growing approach to derive the shape of the body of the human mandible. An initial thresholding technique was applied followed by a 3D seedless region growing algorithm to detect a large portion of the trabecular bone (TB) regions of the mandible. This stage is followed with a rule-constrained 2D segmentation of each MR axial slice to merge the remaining portions of the TB regions with lower intensity levels. The two-stage approach was replicated to detect the cortical bone (CB) regions of the mandibular body. The TB and CB regions detected from the preceding steps were merged and subjected to a series of morphological processes for completion of the mandibular body region definition. Comparisons of the accuracy of segmentation between the two-stage approach, conventional region growing method, 3D level set method, and manual segmentation were made with Jaccard index, Dice index, and mean surface distance (MSD).

RESULTS

The mean accuracy of the proposed method is [Formula: see text] for Jaccard index, [Formula: see text] for Dice index, and [Formula: see text] mm for MSD. The mean accuracy of CRG is [Formula: see text] for Jaccard index, [Formula: see text] for Dice index, and [Formula: see text] mm for MSD. The mean accuracy of the 3D level set method is [Formula: see text] for Jaccard index, [Formula: see text] for Dice index, and [Formula: see text] mm for MSD. The proposed method shows improvement in accuracy over CRG and 3D level set.

CONCLUSION

Accurate segmentation of the body of the human mandible from MR images is achieved with the proposed two-stage rule-constrained seedless region growing approach. The accuracy achieved with the two-stage approach is higher than CRG and 3D level set.

摘要

目的

从 3D 容积图像中提取下颌骨通常是手术规划和评估所必需的。由于骨信号噪声比低,MRI 图像的分割比 CT 更复杂。开发并测试了一种从头部磁共振(MR)图像中自动提取人类下颌骨体形状的方法。

方法

对 12 名受试者的头部匿名 MR 图像数据集进行两阶段规则约束区域生长方法,以得出人类下颌骨体的形状。首先应用初始阈值技术,然后应用 3D 无种子区域生长算法来检测下颌骨小梁骨(TB)区域的大部分。在此阶段之后,对每个 MR 轴向切片进行规则约束的 2D 分割,以将强度水平较低的剩余 TB 区域合并。采用两阶段方法检测下颌骨体的皮质骨(CB)区域。从前几步检测到的 TB 和 CB 区域合并,并进行一系列形态处理,以完成下颌骨体区域的定义。使用 Jaccard 指数、Dice 指数和平均表面距离(MSD)比较了两阶段方法、传统区域生长方法、3D 水平集方法和手动分割的分割精度。

结果

所提出方法的平均精度为 Jaccard 指数[Formula: see text]、Dice 指数[Formula: see text]和 MSD[Formula: see text]mm。CRG 的平均精度为 Jaccard 指数[Formula: see text]、Dice 指数[Formula: see text]和 MSD[Formula: see text]mm。3D 水平集方法的平均精度为 Jaccard 指数[Formula: see text]、Dice 指数[Formula: see text]和 MSD[Formula: see text]mm。与 CRG 和 3D 水平集相比,该方法的准确性有所提高。

结论

提出的两阶段规则约束无种子区域生长方法可从 MR 图像中准确分割人类下颌骨体。两阶段方法的准确性高于 CRG 和 3D 水平集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验