Poirier Bill, Salam A
Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, Lubbock, Texas 79409-1061, USA.
J Chem Phys. 2004 Jul 22;121(4):1690-703. doi: 10.1063/1.1767511.
In this paper, we extend and elaborate upon a wavelet method first presented in a previous publication [B. Poirier, J. Theo. Comput. Chem. 2, 65 (2003)]. In particular, we focus on construction and optimization of the wavelet functions, from theoretical and numerical viewpoints, and also examine their localization properties. The wavelets used are modified Wilson-Daubechies wavelets, which in conjunction with a simple phase space truncation scheme, enable one to solve the multidimensional Schrodinger equation. This approach is ideally suited to rovibrational spectroscopy applications, but can be used in any context where differential equations are involved.
在本文中,我们扩展并详细阐述了先前一篇出版物[B. 波里尔,《理论化学计算杂志》2,65 (2003)]中首次提出的一种小波方法。特别地,我们从理论和数值角度专注于小波函数的构造与优化,并研究它们的局域化性质。所使用的小波是经过修改的威尔逊 - 多贝西小波,其与一种简单的相空间截断方案相结合,能够求解多维薛定谔方程。这种方法非常适合于振转光谱学应用,但可用于任何涉及微分方程的情形。