Griffin Courtney D, Acevedo Ramiro, Massey Daniel W, Kinsey James L, Johnson Bruce R
Department of Chemistry, Rice University, Houston, Texas 77005, USA.
J Chem Phys. 2006 Apr 7;124(13):134105. doi: 10.1063/1.2183306.
Wavelets provide potentially useful quantum bases for coupled anharmonic vibrational modes in polyatomic molecules as well as many other problems. A single compact support wavelet family provides a flexible basis with properties of orthogonality, localization, customizable resolution, and systematic improvability for general types of one-dimensional and separable systems. While direct product wavelet bases can be used in coupled multidimensional problems, exponential scaling of basis size with dimensionality ultimately provides limits on the number of coupled modes that can be treated simultaneously in exact quantum calculations. The molecular self-consistent-field plus configuration-interaction method is used here in multimode wavelet calculations to reduce the basis size without sacrificing flexibility or the ability to systematically control errors. Both two-dimensional Cartesian coordinate and three-dimensional curvilinear coordinate systems are examined with wavelets serving as universal bases in each case. The first example uses standard Daubechies [Ten Lectures on Wavelets (SIAM, Philadelphia (1992)] wavelets for each mode and the second adapts symmlet wavelets to intervals for each of the curvilinear coordinates.
小波为多原子分子中的耦合非谐振动模式以及许多其他问题提供了潜在有用的量子基。单个紧支小波族为一般类型的一维和可分离系统提供了一个具有正交性、局部性、可定制分辨率和系统可改进性的灵活基。虽然直积小波基可用于耦合多维问题,但基大小随维数的指数缩放最终限制了在精确量子计算中可同时处理的耦合模式数量。本文在多模小波计算中使用分子自洽场加组态相互作用方法,以在不牺牲灵活性或系统控制误差能力的情况下减小基大小。在每种情况下,都以小波作为通用基来研究二维笛卡尔坐标系和三维曲线坐标系。第一个例子对每个模式使用标准的Daubechies [《小波十讲》(工业与应用数学学会,费城(1992年))] 小波,第二个例子将对称小波应用于每个曲线坐标的区间。