Lombardini Richard, Poirier Bill
Department of Chemistry and Biochemistry and Department of Physics, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061.
J Chem Phys. 2006 Apr 14;124(14):144107. doi: 10.1063/1.2187473.
In a series of earlier articles [B. Poirier J. Theor. Comput. Chem. 2, 65 (2003); B. Poirier and A. Salam J. Chem. Phys. 121, 1690 (2004); B. Poirier and A. Salam J. Chem. Phys. 121, 1740 (2004)], a new method was introduced for performing exact quantum dynamics calculations in a manner that formally defeats exponential scaling with system dimensionality. The method combines an optimally localized, orthogonal Weyl-Heisenberg wavelet basis set with a simple phase space truncation scheme, and has already been applied to model systems up to 17 degrees of freedom (DOF's). In this paper, the approach is applied for the first time to a real molecular system (neon dimer), necessitating the development of an efficient numerical scheme for representing arbitrary potential energy functions in the wavelet representation. All bound rovibrational energy levels of neon dimer are computed, using both one DOF radial coordinate calculations and a three DOF Cartesian coordinate calculation. Even at such low dimensionalities, the approach is found to be competitive with another state-of-the-art method applied to the same system [J. Montgomery and B. Poirier J. Chem. Phys. 119, 6609 (2003)].
在一系列早期文章中[B. 波里尔,《理论计算机化学杂志》2,65(2003年);B. 波里尔和A. 萨拉姆,《化学物理杂志》121,1690(2004年);B. 波里尔和A. 萨拉姆,《化学物理杂志》121,1740(2004年)],引入了一种新方法,用于以一种在形式上克服与系统维度呈指数缩放关系的方式进行精确量子动力学计算。该方法将一个最优局域化的正交魏尔 - 海森堡小波基组与一个简单的相空间截断方案相结合,并且已经应用于多达17个自由度(DOF)的模型系统。在本文中,该方法首次应用于一个真实分子系统(氖二聚体),这就需要开发一种有效的数值方案,以便在小波表示中表示任意势能函数。使用单自由度径向坐标计算和三自由度笛卡尔坐标计算,计算了氖二聚体的所有束缚振转能级。即使在如此低的维度下,发现该方法与应用于同一系统的另一种最先进方法[J. 蒙哥马利和B. 波里尔,《化学物理杂志》119,6609(2003年)]具有竞争力。