Suppr超能文献

用于结构基因组学的蛋白质纯化自动化

Automation of protein purification for structural genomics.

作者信息

Kim Youngchang, Dementieva Irina, Zhou Min, Wu Ruiying, Lezondra Lour, Quartey Pearl, Joachimiak Grazyna, Korolev Olga, Li Hui, Joachimiak Andrzej

机构信息

Biosciences Division and Structural Biology Center, Argonne National Laboratory, 9700 S. Cass Ave., Bldg 202, Argonne, IL 60439, USA.

出版信息

J Struct Funct Genomics. 2004;5(1-2):111-8. doi: 10.1023/B:JSFG.0000029206.07778.fc.

Abstract

A critical issue in structural genomics, and in structural biology in general, is the availability of high-quality samples. The additional challenge in structural genomics is the need to produce high numbers of proteins with low sequence similarities and poorly characterized or unknown properties. 'Structural-biology-grade' proteins must be generated in a quantity and quality suitable for structure determination experiments using X-ray crystallography or nuclear magnetic resonance (NMR). The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. The purification procedure must yield a homogeneous protein and must be highly reproducible in order to supply milligram quantities of protein and/or its derivative containing marker atom(s). At the Midwest Center for Structural Genomics we have developed protocols for high-throughput protein purification. These protocols have been implemented on AKTA EXPLORER 3D and AKTA FPLC 3D workstations capable of performing multidimensional chromatography. The automated chromatography has been successfully applied to many soluble proteins of microbial origin. Various MCSG purification strategies, their implementation, and their success rates are discussed in this paper.

摘要

结构基因组学乃至整个结构生物学中的一个关键问题是高质量样本的可获得性。结构基因组学面临的额外挑战是需要大量生产低序列相似性且特性表征不佳或未知的蛋白质。“结构生物学级”蛋白质的产量和质量必须适合使用X射线晶体学或核磁共振(NMR)进行结构测定实验。蛋白质纯化和处理程序的选择对于获得高质量蛋白质样本起着关键作用。纯化程序必须产生均一的蛋白质,并且必须具有高度的可重复性,以便提供毫克级的蛋白质和/或含有标记原子的其衍生物。在中西部结构基因组学中心,我们已经开发了高通量蛋白质纯化方案。这些方案已在能够进行多维色谱分析的AKTA EXPLORER 3D和AKTA FPLC 3D工作站上实施。自动色谱法已成功应用于许多微生物来源的可溶性蛋白质。本文讨论了各种MCSG纯化策略、其实施方法及其成功率。

相似文献

1
Automation of protein purification for structural genomics.
J Struct Funct Genomics. 2004;5(1-2):111-8. doi: 10.1023/B:JSFG.0000029206.07778.fc.
2
High-throughput protein purification and quality assessment for crystallization.
Methods. 2011 Sep;55(1):12-28. doi: 10.1016/j.ymeth.2011.07.010. Epub 2011 Aug 31.
3
Chapter 3. High-throughput protein purification for x-ray crystallography and NMR.
Adv Protein Chem Struct Biol. 2008;75:85-105. doi: 10.1016/S0065-3233(07)75003-9. Epub 2009 Feb 26.
4
Expression screening, protein purification and NMR analysis of human protein domains for structural genomics.
J Struct Funct Genomics. 2004;5(1-2):119-31. doi: 10.1023/B:JSFG.0000029200.66197.0c.
5
Structural genomics for Caenorhabditis elegans: high throughput protein expression analysis.
Protein Expr Purif. 2004 Mar;34(1):49-55. doi: 10.1016/j.pep.2003.11.026.
6
Preparation of protein samples for NMR structure, function, and small-molecule screening studies.
Methods Enzymol. 2011;493:21-60. doi: 10.1016/B978-0-12-381274-2.00002-9.
7
The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium.
J Struct Biol. 2010 Oct;172(1):21-33. doi: 10.1016/j.jsb.2010.07.011. Epub 2010 Aug 3.
8
Laboratory scale structural genomics.
J Struct Funct Genomics. 2004;5(1-2):147-57. doi: 10.1023/B:JSFG.0000029193.82120.d1.
9
Expression of human proteins at the Southeast Collaboratory for Structural Genomics.
J Struct Funct Genomics. 2004;5(1-2):159-65. doi: 10.1023/B:JSFG.0000029202.77832.34.
10
Automated recombinant protein expression screening in Escherichia coli.
Methods Mol Biol. 2008;426:175-86. doi: 10.1007/978-1-60327-058-8_10.

引用本文的文献

1
Study of peripheral domains in structure-function of isocitrate lyase (ICL) from Pseudomonas aeruginosa.
World J Microbiol Biotechnol. 2023 Oct 12;39(12):339. doi: 10.1007/s11274-023-03768-0.
2
Sensor Domain of Histidine Kinase VxrA of - A Hairpin-swapped Dimer and its Conformational Change.
J Bacteriol. 2021 Jun 1;203(11). doi: 10.1128/JB.00643-20. Epub 2021 Mar 22.
3
3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase.
Acta Crystallogr D Struct Biol. 2020 Feb 1;76(Pt 2):166-175. doi: 10.1107/S2059798320000212. Epub 2020 Jan 31.
4
Structural analysis of free and liganded forms of the Fab fragment of a high-affinity anti-cocaine antibody, h2E2.
Acta Crystallogr F Struct Biol Commun. 2019 Nov 1;75(Pt 11):697-706. doi: 10.1107/S2053230X19013608. Epub 2019 Nov 5.
5
Conservation of the structure and function of bacterial tryptophan synthases.
IUCrJ. 2019 May 29;6(Pt 4):649-664. doi: 10.1107/S2052252519005955. eCollection 2019 Jul 1.
6
Interaction of antidiabetic α-glucosidase inhibitors and gut bacteria α-glucosidase.
Protein Sci. 2018 Aug;27(8):1498-1508. doi: 10.1002/pro.3444. Epub 2018 Jul 10.
7
Functional Profiling and Crystal Structures of Isothiocyanate Hydrolases Found in Gut-Associated and Plant-Pathogenic Bacteria.
Appl Environ Microbiol. 2018 Jul 2;84(14). doi: 10.1128/AEM.00478-18. Print 2018 Jul 15.
8
Crystal Structure of Thioesterase SgcE10 Supporting Common Polyene Intermediates in 9- and 10-Membered Enediyne Core Biosynthesis.
ACS Omega. 2017 Aug 31;2(8):5159-5169. doi: 10.1021/acsomega.7b00933. Epub 2017 Aug 30.
9
The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily.
Nucleic Acids Res. 2017 May 19;45(9):5013-5025. doi: 10.1093/nar/gkx230.

本文引用的文献

1
Towards higher-throughput membrane protein production for structural genomics initiatives.
J Struct Funct Genomics. 2004;5(1-2):167-72. doi: 10.1023/B:JSFG.0000029201.33710.46.
2
Shotgun crystallization strategy for structural genomics: an optimized two-tiered crystallization screen against the Thermotoga maritima proteome.
Acta Crystallogr D Biol Crystallogr. 2003 Jun;59(Pt 6):1028-37. doi: 10.1107/s0907444903007790. Epub 2003 May 23.
4
Crystal structure of Enterococcus faecalis SlyA-like transcriptional factor.
J Biol Chem. 2003 May 30;278(22):20240-4. doi: 10.1074/jbc.M300292200. Epub 2003 Mar 20.
5
Structural genomics.
Methods Biochem Anal. 2003;44:591-612.
7
Structure of Bacillus subtilis YXKO--a member of the UPF0031 family and a putative kinase.
J Struct Biol. 2002 Sep;139(3):161-70. doi: 10.1016/s1047-8477(02)00532-4.
8
Autotracing of Escherichia coli acetate CoA-transferase alpha-subunit structure using 3.4 A MAD and 1.9 A native data.
Acta Crystallogr D Biol Crystallogr. 2002 Dec;58(Pt 12):2116-21. doi: 10.1107/s0907444902017055. Epub 2002 Nov 23.
9
Engineering soluble proteins for structural genomics.
Nat Biotechnol. 2002 Sep;20(9):927-32. doi: 10.1038/nbt732. Epub 2002 Aug 19.
10
Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline.
Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11664-9. doi: 10.1073/pnas.142413399. Epub 2002 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验