Suppr超能文献

基于双树小波变换阈值调整的心电图信号性能去噪评估

ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform.

作者信息

El B'charri Oussama, Latif Rachid, Elmansouri Khalifa, Abenaou Abdenbi, Jenkal Wissam

机构信息

ESSI-LISTI Laboratory, National School of Applied Sciences, Ibn Zohr University, Agadir, Morocco.

High School of Biomedical Engineering, UM6SS University, Casablanca, Morocco.

出版信息

Biomed Eng Online. 2017 Feb 7;16(1):26. doi: 10.1186/s12938-017-0315-1.

Abstract

BACKGROUND

Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients.

METHODS

The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this method for noise removal from ECG signal has not been investigated yet. In this work, we shall provide a comprehensive study on the impact of the choice of threshold algorithm, threshold value, and the appropriate wavelet decomposition level to evaluate the ECG signal de-noising performance.

RESULTS

A set of simulations is performed on both synthetic and real ECG signals to achieve the promised results. First, the synthetic ECG signal is used to observe the algorithm response. The evaluation results of synthetic ECG signal corrupted by various types of noise has showed that the modified unified threshold and wavelet hyperbolic threshold de-noising method is better in realistic and colored noises. The tuned threshold is then used on real ECG signals from the MIT-BIH database. The results has shown that the proposed method achieves higher performance than the ordinary dual tree wavelet transform into all kinds of noise removal from ECG signal.

CONCLUSION

The simulation results indicate that the algorithm is robust for all kinds of noises with varying degrees of input noise, providing a high quality clean signal. Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.

摘要

背景

由于心电图(ECG)信号频率低、幅度弱,它对各种混合噪声敏感,这可能会降低诊断准确性并阻碍医生对患者做出正确决策。

方法

双树小波变换(DT-WT)是离散小波变换的最新增强版本之一。然而,尚未研究该方法用于去除ECG信号噪声的阈值调整。在这项工作中,我们将全面研究阈值算法的选择、阈值以及适当的小波分解级别对评估ECG信号去噪性能的影响。

结果

对合成和真实ECG信号进行了一组模拟以获得预期结果。首先,使用合成ECG信号观察算法响应。对受各种类型噪声干扰的合成ECG信号的评估结果表明,改进的统一阈值和小波双曲阈值去噪方法在处理实际噪声和有色噪声方面表现更好。然后将调整后的阈值应用于来自MIT-BIH数据库的真实ECG信号。结果表明,所提出的方法在从ECG信号中去除各种噪声方面比普通双树小波变换具有更高的性能。

结论

仿真结果表明,该算法对于各种程度的输入噪声都具有鲁棒性,能够提供高质量的干净信号。此外,该算法非常简单,可用于实时ECG监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed4a/5297224/f9ba2cb75213/12938_2017_315_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验