Abi-Abdallah Dima, Chauvet Eric, Bouchet-Fakri Latifa, Bataillard Alain, Briguet André, Fokapu Odette
Laboratoire de Biomécanique et Génie Biomédical, UMR CNRS 6600, Université de Technologie de Compiègne, France.
Biomed Eng Online. 2006 Feb 20;5:11. doi: 10.1186/1475-925X-5-11.
Present developments in Nuclear Magnetic Resonance (NMR) imaging techniques strive for improved spatial and temporal resolution performances. However, trying to achieve the shortest gradient rising time with high intensity gradients has its drawbacks: It generates high amplitude noises that get superimposed on the simultaneously recorded electrophysiological signals, needed to synchronize moving organ images. Consequently, new strategies have to be developed for processing these collected signals during Magnetic Resonance Imaging (MRI) examinations. The aim of this work is to extract an efficient reference signal, from an electrocardiogram (ECG) that was contaminated by the NMR artefacts. This may be used for image triggering and/or cardiac rhythm monitoring.
Our method, based on sub-band decomposition using wavelet filters, is tested on various ECG signals recorded during three imaging sequences: Gradient Echo (GE), Fast Spin Echo (FSE) and Inversion Recovery with Spin Echo (IRSE). In order to define the most adapted wavelet functions to use according to the excitation protocols, noise generated by each imaging sequence is recorded and analysed. After exploring noise models along with information found in the literature, a group of 14 wavelets, members of three families (Daubechies, Coiflets, Symlets), is selected for the study. The extraction process is carried out by decomposing the contaminated ECG signals into 8 scales using a given wavelet function, then combining the sub-bands necessary for cardiac synchronization, i.e. those containing the essential part of the QRS energy, to construct a reference signal.
The efficiency of the presented method has been tested on a group of quite representative signals containing: highly contaminated (mean SNR<--5 dB) simulated ECGs that replicate normal and pathological human heart beats, as well as some pathological and healthy rodents' actual ECG records. Despite the weak SNR of the contaminated ECG, the performances were quite satisfactory. When comparing the wavelet performances, one may notice that for a given sequence, some wavelets are more efficient for processing than others; for GE, FSE and IRSE sequence, good synchronisation condition is accomplished with coif5, sym8, and sym4 respectively.
Sub-band decomposition proved to be very suitable for extracting a reference signal from a corrupted ECG for MRI triggering. An appropriate choice of the wavelet function, in accordance with the image sequence type, could considerably improve the quality of the reference signal for better image synchronization.
核磁共振(NMR)成像技术的当前发展致力于提高空间和时间分辨率性能。然而,试图以高强度梯度实现最短的梯度上升时间存在其缺点:它会产生高幅度噪声,这些噪声会叠加在同时记录的电生理信号上,而这些信号是同步运动器官图像所必需的。因此,必须开发新的策略来处理磁共振成像(MRI)检查期间收集的这些信号。这项工作的目的是从被NMR伪影污染的心电图(ECG)中提取一个有效的参考信号。这可用于图像触发和/或心律监测。
我们基于使用小波滤波器进行子带分解的方法,在三个成像序列(梯度回波(GE)、快速自旋回波(FSE)和自旋回波反转恢复(IRSE))期间记录的各种ECG信号上进行了测试。为了根据激发协议确定最适合使用的小波函数,记录并分析了每个成像序列产生的噪声。在探索噪声模型以及文献中发现的信息之后,选择了三个家族(Daubechies、Coiflets、Symlets)的14个小波组成的一组进行研究。提取过程是通过使用给定的小波函数将受污染的ECG信号分解为8个尺度,然后组合心脏同步所需的子带,即那些包含QRS能量主要部分的子带,来构建一个参考信号。
所提出的方法的效率已在一组相当有代表性的信号上进行了测试,这些信号包括:高度污染(平均信噪比< - 5 dB)的模拟ECG,其复制了正常和病理性人类心跳,以及一些病理性和健康啮齿动物的实际ECG记录。尽管受污染的ECG的信噪比很低,但性能相当令人满意。在比较小波性能时,可以注意到对于给定的序列,一些小波比其他小波在处理上更有效;对于GE、FSE和IRSE序列,分别使用coif5、sym8和sym4可实现良好的同步条件。
子带分解被证明非常适合从用于MRI触发的受损ECG中提取参考信号。根据图像序列类型适当选择小波函数,可以显著提高参考信号的质量,以实现更好的图像同步。