Haug Trude, Sigg Daniel, Ciani Sergio, Toro Ligia, Stefani Enrico, Olcese Riccardo
Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-7115, USA.
J Gen Physiol. 2004 Aug;124(2):173-84. doi: 10.1085/jgp.200308949.
The pore region of the majority of K+ channels contains the highly conserved GYGD sequence, known as the K+ channel signature sequence, where the GYG is critical for K+ selectivity (Heginbotham, L., T. Abramson, and R. MacKinnon. 1992. Science. 258:1152-1155). Exchanging the aspartate residue with asparagine in this sequence abolishes ionic conductance of the Shaker K+ channel (D447N) (Hurst, R.S., L. Toro, and E. Stefani. 1996. FEBS Lett. 388:59-65). In contrast, we found that the corresponding mutation (D292N) in the pore forming alpha subunit (hSlo) of the voltage- and Ca(2+)-activated K+ channel (BKCa, MaxiK) did not prevent conduction but reduced single channel conductance. We have investigated the role of outer pore negative charges in ion conduction (this paper) and channel gating (Haug, T., R. Olcese, T. Ligia, and E. Stefani. 2004. J. Gen Physiol. 124:185-197). In symmetrical 120 mM [K+], the D292N mutation reduced the outward single channel conductance by approximately 40% and nearly abolished inward K+ flow (outward rectification). This rectification was partially relieved by increasing the external K+ concentration to 700 mM. Small inward currents were resolved by introducing an additional mutation (R207Q) that greatly increases the open probability of the channel. A four-state multi-ion pore model that incorporates the effects of surface charge was used to simulate the essential properties of channel conduction. The conduction properties of the mutant channel (D292N) could be predicted by a simple approximately 8.5-fold reduction of the surface charge density without altering any other parameter. These results indicate that the aspartate residue in the BKCa pore plays a key role in conduction and suggest that the pore structure is not affected by the mutation. We speculate that the negative charge strongly accumulates K+ in the outer vestibule close to the selectivity filter, thus increasing the rate of ion entry into the pore.
大多数钾离子通道的孔区包含高度保守的GYGD序列,即所谓的钾离子通道特征序列,其中GYG对钾离子选择性至关重要(赫金博瑟姆,L.,T. 阿布拉姆森,和R. 麦金农。1992年。《科学》。258:1152 - 1155)。将该序列中的天冬氨酸残基替换为天冬酰胺会消除Shaker钾离子通道(D447N)的离子传导(赫斯特,R.S.,L. 托罗,和E. 斯特凡尼。1996年。《欧洲生物化学学会联合会快报》。388:59 - 65)。相比之下,我们发现电压和钙离子激活的钾离子通道(BKCa,大电导钙激活钾通道)的孔形成α亚基(hSlo)中的相应突变(D292N)并不阻止传导,但会降低单通道电导。我们研究了孔外部负电荷在离子传导(本文)和通道门控(豪格,T.,R. 奥尔塞斯,T. 利贾,和E. 斯特凡尼。2004年。《普通生理学杂志》。124:185 - 197)中的作用。在对称的120 mM [K⁺] 中,D292N突变使外向单通道电导降低约40%,并几乎消除内向钾离子流(外向整流)。通过将外部钾离子浓度提高到700 mM,这种整流作用部分得到缓解。通过引入另一个极大增加通道开放概率的突变(R207Q),分辨出了小的内向电流。一个包含表面电荷效应的四态多离子孔模型被用于模拟通道传导的基本特性。突变通道(D292N)的传导特性可以通过表面电荷密度简单地降低约8.5倍来预测,而不改变任何其他参数。这些结果表明BKCa孔中的天冬氨酸残基在传导中起关键作用,并表明孔结构不受该突变影响。我们推测负电荷在靠近选择性过滤器的外前庭强烈积累钾离子,从而增加离子进入孔的速率。