Díaz-Franulic Ignacio, Sepúlveda Romina V, Navarro-Quezada Nieves, González-Nilo Fernando, Naranjo David
Centro Interdisciplinario de Neurociencia de Valparaíso and Programa de Doctorado en Ciencias mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360103, Chile Centro Interdisciplinario de Neurociencia de Valparaíso and Programa de Doctorado en Ciencias mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360103, Chile.
Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello, Santiago 8370146, Chile.
J Gen Physiol. 2015 Aug;146(2):133-46. doi: 10.1085/jgp.201411353.
K channels mediate the selective passage of K(+) across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K(+) transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker's reported ∼ 20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼ 0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K(+) is set to ∼ 4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼ 8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K(+)], beyond that of P475D, suggesting an ∼ 200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum conductance of the large conductance K (BK) channel (the K channel of highest conductance), reducing the energy gap between their K(+) transport rates to ∼ 1 kT. Thus, although Shaker's pore sustains ion translocation as the BK channel's does, higher energetic costs of ion stabilization or higher friction with the ion's rigid hydration cage in its narrower aqueous cavity may entail higher resistance.
钾通道通过与位于外表面附近的孔道选择性过滤器处的离子进行紧密相互作用,介导钾离子(K⁺)选择性地穿过质膜。尽管选择性过滤器具有高度保守性,但不同钾通道的K⁺转运特性差异很大,其单通道电导范围跨越两个多数量级。小 - 中电导钾通道Shaker孔道胞质入口处的Pro475残基发生突变(Pro475Asp(P475D)或Pro475Gln(P475Q)),分别使Shaker报道的约20 pS的电导增加约6倍和约3倍,而对其选择性没有任何可检测到的影响。这些发现表明,钾通道电导多样性背后的结构决定因素与选择性过滤器不同,使得P475D和P475Q成为识别钾通道单通道电导关键决定因素的优秀探针。通过在向内部溶液中单侧添加2 M蔗糖以增加其粘度后测量扩散限制的单通道外向电流,我们估计了所有三种Shaker变体(野生型、P475D和P475Q)的捕获孔内半径约为0.82 Å。如果将水合K⁺的有效半径设定为约4 Å,该估计值与Kv1.2 / 2.1结构的内部入口一致。单侧暴露于蔗糖使我们能够估计内部和外部通道电阻以及内孔电阻。我们确定Shaker电阻主要位于内腔,而只有约8%位于选择性过滤器。为了降低内部电阻,我们向内前庭引入额外的天冬氨酸残基以促进离子占据。在饱和[K⁺]浓度下测量时,没有添加天冬氨酸会使最大单通道电导超过P475D,这表明Shaker存在约200 pS的电导上限。该值约为大电导钾(BK)通道(电导最高的钾通道)最大电导的三分之一,将它们的K⁺转运速率之间的能量差距减小到约1 kT。因此,尽管Shaker的孔道与BK通道一样维持离子转运,但在其较窄的水腔中,离子稳定化的能量成本较高或与离子刚性水合笼的摩擦力较大,可能导致更高的电阻。