Suppr超能文献

用于功能神经成像数据的时空小波重采样

Spatiotemporal wavelet resampling for functional neuroimaging data.

作者信息

Breakspear Michael, Brammer Michael J, Bullmore Ed T, Das Pritha, Williams Leanne M

机构信息

Brain Dynamics Centre, Westmead Hospital and University of Sydney, Sydney, Australia.

出版信息

Hum Brain Mapp. 2004 Sep;23(1):1-25. doi: 10.1002/hbm.20045.

Abstract

The study of dynamic interdependences between brain regions is currently a very active research field. For any connectivity study, it is important to determine whether correlations between two selected brain regions are statistically significant or only chance effects due to non-specific correlations present throughout the data. In this report, we present a wavelet-based non-parametric technique for testing the null hypothesis that the correlations are typical of the data set and not unique to the regions of interest. This is achieved through spatiotemporal resampling of the data in the wavelet domain. Two functional MRI data sets were analysed: (1) Data from 8 healthy human subjects viewing a checkerboard image, and (2) "Null" data obtained from 3 healthy human subjects, resting with eyes closed. It was demonstrated that constrained resampling of the data in the wavelet domain allows construction of bootstrapped data with four essential properties: (1) Spatial and temporal correlations within and between slices are preserved, (2) The irregular geometry of the intracranial images is maintained, (3) There is adequate type I error control, and (4) Expected experiment-induced correlations are identified. The limitations and possible extensions of the proposed technique are discussed.

摘要

脑区之间动态相互依存关系的研究目前是一个非常活跃的研究领域。对于任何连通性研究而言,确定两个选定脑区之间的相关性是具有统计学意义,还是仅仅是由于整个数据中存在的非特异性相关性而产生的偶然效应,这一点很重要。在本报告中,我们提出了一种基于小波的非参数技术,用于检验原假设,即相关性是数据集的典型特征,而非特定感兴趣区域所特有。这是通过在小波域对数据进行时空重采样来实现的。分析了两个功能磁共振成像数据集:(1)来自8名健康人类受试者观看棋盘图像的数据,以及(2)从3名健康人类受试者闭眼休息时获得的“空”数据。结果表明,在小波域对数据进行约束重采样能够构建具有四个基本特性的自抽样数据:(1)切片内和切片间的空间和时间相关性得以保留;(2)颅内图像的不规则几何形状得以维持;(3)有足够的I型错误控制;(4)能够识别预期的实验诱导相关性。文中还讨论了所提出技术的局限性和可能的扩展。

相似文献

1
Spatiotemporal wavelet resampling for functional neuroimaging data.
Hum Brain Mapp. 2004 Sep;23(1):1-25. doi: 10.1002/hbm.20045.
2
Determining significant connectivity by 4D spatiotemporal wavelet packet resampling of functional neuroimaging data.
Neuroimage. 2006 Jul 1;31(3):1142-55. doi: 10.1016/j.neuroimage.2006.01.012. Epub 2006 Mar 20.
3
Resampling methods for improved wavelet-based multiple hypothesis testing of parametric maps in functional MRI.
Neuroimage. 2007 Oct 1;37(4):1186-94. doi: 10.1016/j.neuroimage.2007.05.057. Epub 2007 Jun 14.
4
Groupwise spatial normalization of fMRI data based on multi-range functional connectivity patterns.
Neuroimage. 2013 Nov 15;82:355-72. doi: 10.1016/j.neuroimage.2013.05.093. Epub 2013 May 28.
5
Resting state networks in empirical and simulated dynamic functional connectivity.
Neuroimage. 2017 Oct 1;159:388-402. doi: 10.1016/j.neuroimage.2017.07.065. Epub 2017 Aug 3.
6
A wavelet-based method for measuring the oscillatory dynamics of resting-state functional connectivity in MEG.
Neuroimage. 2011 May 1;56(1):69-77. doi: 10.1016/j.neuroimage.2011.01.046. Epub 2011 Jan 21.
7
Wavelet variance components in image space for spatiotemporal neuroimaging data.
Neuroimage. 2005 Mar;25(1):159-68. doi: 10.1016/j.neuroimage.2004.10.037. Epub 2005 Jan 5.
8
Evaluation of spatio-temporal decomposition techniques for group analysis of fMRI resting state data sets.
Neuroimage. 2014 Feb 15;87:363-82. doi: 10.1016/j.neuroimage.2013.10.062. Epub 2013 Nov 5.
9
Multiple-region directed functional connectivity based on phase delays.
Hum Brain Mapp. 2017 Mar;38(3):1374-1386. doi: 10.1002/hbm.23460. Epub 2016 Nov 16.
10
Estimation of false discovery rates for wavelet-denoised statistical parametric maps.
Neuroimage. 2006 Oct 15;33(1):72-84. doi: 10.1016/j.neuroimage.2006.06.033. Epub 2006 Aug 17.

引用本文的文献

1
The effect of spherical projection on spin tests for brain maps.
Imaging Neurosci (Camb). 2025 Aug 21;3. doi: 10.1162/IMAG.a.118. eCollection 2025.
2
Generation of surrogate brain maps preserving spatial autocorrelation through random rotation of geometric eigenmodes.
Imaging Neurosci (Camb). 2025 Jul 16;3. doi: 10.1162/IMAG.a.71. eCollection 2025.
3
Towards a biologically annotated brain connectome.
Nat Rev Neurosci. 2023 Dec;24(12):747-760. doi: 10.1038/s41583-023-00752-3. Epub 2023 Oct 17.
4
Decoding the Brain's Surface to Track Deeper Activity.
Front Neuroimaging. 2022 Mar 17;1:815778. doi: 10.3389/fnimg.2022.815778. eCollection 2022.
5
Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends.
Bioengineering (Basel). 2023 Mar 17;10(3):372. doi: 10.3390/bioengineering10030372.
7
External drivers of BOLD signal's non-stationarity.
PLoS One. 2022 Sep 19;17(9):e0257580. doi: 10.1371/journal.pone.0257580. eCollection 2022.
8
Local molecular and global connectomic contributions to cross-disorder cortical abnormalities.
Nat Commun. 2022 Aug 10;13(1):4682. doi: 10.1038/s41467-022-32420-y.
9
Null models in network neuroscience.
Nat Rev Neurosci. 2022 Aug;23(8):493-504. doi: 10.1038/s41583-022-00601-9. Epub 2022 May 31.

本文引用的文献

1
Comparison of Fourier and wavelet resampling methods.
Magn Reson Med. 2004 Feb;51(2):418-22. doi: 10.1002/mrm.10671.
2
Bivariate surrogate techniques: necessity, strengths, and caveats.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 2):066202. doi: 10.1103/PhysRevE.68.066202. Epub 2003 Dec 15.
3
Wavelets and statistical analysis of functional magnetic resonance images of the human brain.
Stat Methods Med Res. 2003 Oct;12(5):375-99. doi: 10.1191/0962280203sm339ra.
5
Functional connectivity: studying nonlinear, delayed interactions between BOLD signals.
Neuroimage. 2003 Oct;20(2):962-74. doi: 10.1016/S1053-8119(03)00340-9.
6
Multivariate autoregressive modeling of fMRI time series.
Neuroimage. 2003 Aug;19(4):1477-91. doi: 10.1016/s1053-8119(03)00160-5.
7
Dynamic causal modelling.
Neuroimage. 2003 Aug;19(4):1273-302. doi: 10.1016/s1053-8119(03)00202-7.
8
Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects.
Hum Brain Mapp. 2003 Jun;19(2):63-78. doi: 10.1002/hbm.10106.
9
Functional connectivity in the resting brain: a network analysis of the default mode hypothesis.
Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8. doi: 10.1073/pnas.0135058100. Epub 2002 Dec 27.
10
Decreased neuronal synchronization during experimental seizures.
J Neurosci. 2002 Aug 15;22(16):7297-307. doi: 10.1523/JNEUROSCI.22-16-07297.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验