Suppr超能文献

基于小波的方法测量静息状态功能磁共振连接的振荡动力学。

A wavelet-based method for measuring the oscillatory dynamics of resting-state functional connectivity in MEG.

机构信息

Laboratory of Brain and Cognition, National Institute of Mental Health, USA.

出版信息

Neuroimage. 2011 May 1;56(1):69-77. doi: 10.1016/j.neuroimage.2011.01.046. Epub 2011 Jan 21.

Abstract

Determining the dynamics of functional connectivity is critical for understanding the brain. Recent functional magnetic resonance imaging (fMRI) studies demonstrate that measuring correlations between brain regions in resting-state activity can be used to reveal intrinsic neural networks. To study the oscillatory dynamics that underlie intrinsic functional connectivity between regions requires high temporal resolution measures of electrophysiological brain activity, such as magnetoencephalography (MEG). However, there is a lack of consensus as to the best method for examining connectivity in resting-state MEG data. Here we adapted a wavelet-based method for measuring phase-locking with respect to the frequency of neural oscillations. This method employs anatomical MRI information combined with MEG data using the minimum norm estimate inverse solution to produce functional connectivity maps from a "seed" region to all other locations on the cortical surface at any and all frequencies of interest. We test this method by simulating phase-locked oscillations at various points on the cortical surface, which illustrates a substantial artifact that results from imperfections in the inverse solution. We demonstrate that normalizing resting-state MEG data using phase-locking values computed on empty room data reduces much of the effects of this artifact. We then use this method with eight subjects to reveal intrinsic interhemispheric connectivity in the auditory network in the alpha frequency band in a silent environment. This spectral resting-state functional connectivity imaging method may allow us to better understand the oscillatory dynamics underlying intrinsic functional connectivity in the human brain.

摘要

确定功能连接的动态对于理解大脑至关重要。最近的功能磁共振成像(fMRI)研究表明,测量静息状态活动中脑区之间的相关性可以用来揭示内在的神经网络。为了研究区域间内在功能连接的振荡动力学,需要对电生理脑活动进行高时间分辨率的测量,例如脑磁图(MEG)。然而,对于如何检查静息态 MEG 数据中的连接性,目前还没有共识。在这里,我们采用了一种基于小波的方法来测量与神经振荡频率相关的相位锁定。该方法利用解剖学 MRI 信息结合 MEG 数据,使用最小范数估计逆解,从“种子”区域到皮质表面上的所有其他位置,以任何和所有感兴趣的频率生成功能连接图。我们通过在皮质表面的不同点模拟相位锁定振荡来测试该方法,这说明了由于逆解的不完美而产生的大量伪影。我们证明,使用空房间数据计算的相位锁定值对静息态 MEG 数据进行归一化可以大大减少这种伪影的影响。然后,我们使用该方法对 8 名受试者进行研究,在安静环境中以 alpha 频带揭示听觉网络中的内在半球间连接。这种频谱静息态功能连接成像方法可能使我们能够更好地理解人类大脑中内在功能连接的振荡动力学。

相似文献

引用本文的文献

7
MEG Sensor Selection for Neural Speech Decoding.用于神经语音解码的脑磁图(MEG)传感器选择
IEEE Access. 2020;8:182320-182337. doi: 10.1109/access.2020.3028831. Epub 2020 Oct 6.
10
Brain networks and their relevance for stroke rehabilitation.脑网络及其与中风康复的相关性。
Clin Neurophysiol. 2019 Jul;130(7):1098-1124. doi: 10.1016/j.clinph.2019.04.004. Epub 2019 Apr 15.

本文引用的文献

5
Electrophysiological correlates of the brain's intrinsic large-scale functional architecture.大脑内在大规模功能架构的电生理关联
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16039-44. doi: 10.1073/pnas.0807010105. Epub 2008 Oct 8.
8
The effects of priming on frontal-temporal communication.启动对额颞叶交流的影响。
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8405-9. doi: 10.1073/pnas.0710674105. Epub 2008 Jun 9.
10
Electrophysiological signatures of resting state networks in the human brain.人类大脑静息态网络的电生理特征。
Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5. doi: 10.1073/pnas.0700668104. Epub 2007 Aug 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验