Suppr超能文献

在一项关于二氧化硅与肺癌的研究中,将吸烟作为未测量混杂因素的蒙特卡洛敏感性分析和贝叶斯分析。

Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer.

作者信息

Steenland Kyle, Greenland Sander

机构信息

Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.

出版信息

Am J Epidemiol. 2004 Aug 15;160(4):384-92. doi: 10.1093/aje/kwh211.

Abstract

Conventional confidence intervals reflect uncertainty due to random error but omit uncertainty due to biases, such as confounding, selection bias, and measurement error. Such uncertainty can be quantified, especially if the investigator has some idea of the amount of such bias. A traditional sensitivity analysis produces one or more point estimates for the exposure effect hypothetically adjusted for bias, but it does not provide a range of effect measures given the likely range of bias. Here the authors used Monte Carlo sensitivity analysis and Bayesian bias analysis to provide such a range, using data from a US silica-lung cancer study in which results were potentially confounded by smoking. After positing a distribution for the smoking habits of workers and referents, a distribution of rate ratios for the effect of smoking on lung cancer, and a model for the bias parameter, the authors derived a distribution for the silica-lung cancer rate ratios hypothetically adjusted for smoking. The original standardized mortality ratio for the silica-lung cancer relation was 1.60 (95% confidence interval: 1.31, 1.93). Monte Carlo sensitivity analysis, adjusting for possible confounding by smoking, led to an adjusted standardized mortality ratio of 1.43 (95% Monte Carlo limits: 1.15, 1.78). Bayesian results were similar (95% posterior limits: 1.13, 1.84). The authors believe that these types of analyses, which make explicit and quantify sources of uncertainty, should be more widely adopted by epidemiologists.

摘要

传统的置信区间反映了由于随机误差导致的不确定性,但忽略了由于偏倚(如混杂、选择偏倚和测量误差)导致的不确定性。这种不确定性是可以量化的,尤其是当研究者对这种偏倚的大小有一定概念时。传统的敏感性分析会产生一个或多个针对假设已校正偏倚的暴露效应的点估计值,但它并没有在可能的偏倚范围内给出一系列效应量度。本文作者使用蒙特卡罗敏感性分析和贝叶斯偏倚分析来给出这样一个范围,数据来自美国一项硅肺与肺癌的研究,该研究结果可能受到吸烟的混杂影响。在假定了工人和对照人群吸烟习惯的分布、吸烟对肺癌影响的率比分布以及偏倚参数模型后,作者得出了假设已校正吸烟影响的硅肺与肺癌率比的分布。硅肺与肺癌关系的原始标准化死亡比为1.60(95%置信区间:1.31,1.93)。蒙特卡罗敏感性分析校正了吸烟可能造成的混杂,得出校正后的标准化死亡比为1.43(95%蒙特卡罗区间:1.15,1.78)。贝叶斯分析结果与之相似(95%后验区间:1.13,1.84)。作者认为,这类能够明确并量化不确定性来源的分析方法,流行病学家应更广泛地采用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验