Centre for Public Health Research, Massey University, Wellington, New Zealand.
Unit of Cancer Epidemiology, Department of Medical Sciences, University of Turin, Turin, Italy.
Int J Epidemiol. 2017 Jun 1;46(3):1063-1072. doi: 10.1093/ije/dyx027.
Measurement error is an important source of bias in epidemiological studies. We illustrate three approaches to sensitivity analysis for the effect of measurement error: imputation of the 'true' exposure based on specifying the sensitivity and specificity of the measured exposure (SS); direct imputation (DI) using a regression model for the predictive values; and adjustment based on a fully Bayesian analysis.
We deliberately misclassify smoking status in data from a case-control study of lung cancer. We then implement the SS and DI methods using fixed-parameter (FBA) and probabilistic (PBA) bias analyses, and Bayesian analysis using the Markov-Chain Monte-Carlo program WinBUGS to show how well each recovers the original association.
The 'true' smoking-lung cancer odds ratio (OR), adjusted for sex in the original dataset, was OR = 8.18 [95% confidence limits (CL): 5.86, 11.43]; after misclassification, it decreased to OR = 3.08 (nominal 95% CL: 2.40, 3.96). The adjusted point estimates from all three approaches were always closer to the 'true' OR than the OR estimated from the unadjusted misclassified smoking data, and the adjusted interval estimates were always wider than the unadjusted interval estimate. When imputed misclassification parameters departed much from the actual misclassification, the 'true' OR was often omitted in the FBA intervals whereas it was always included in the PBA and Bayesian intervals.
These results illustrate how PBA and Bayesian analyses can be used to better account for uncertainty and bias due to measurement error.
测量误差是流行病学研究中偏倚的一个重要来源。我们举例说明了三种针对测量误差影响的敏感性分析方法:基于规定测量暴露的灵敏度和特异性(SS)来推断“真实”暴露;使用预测值的回归模型进行直接推断(DI);以及基于完全贝叶斯分析进行调整。
我们故意在肺癌病例对照研究的数据中对吸烟状况进行错误分类。然后,我们使用固定参数(FBA)和概率(PBA)偏差分析以及使用 Markov-Chain Monte-Carlo 程序 WinBUGS 进行的贝叶斯分析来实现 SS 和 DI 方法,以展示每种方法如何很好地恢复原始关联。
在原始数据集调整性别后,“真实”的吸烟与肺癌比值比(OR)为 OR=8.18(95%置信区间(CL):5.86,11.43);经过错误分类后,它降低至 OR=3.08(名义 95%CL:2.40,3.96)。所有三种方法的调整点估计值都始终比未调整的错误分类吸烟数据估计的 OR 更接近“真实”OR,并且调整后的区间估计值始终比未调整的区间估计值更宽。当推断的错误分类参数与实际错误分类相差太大时,FBA 区间通常会忽略“真实”OR,而 PBA 和贝叶斯区间始终包含“真实”OR。
这些结果说明了如何使用 PBA 和贝叶斯分析更好地考虑测量误差引起的不确定性和偏差。