Department of Epidemiology and Biostatistics, McGill University, Montreal, QC, Canada.
Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, New York, USA.
Biom J. 2023 Jun;65(5):e2100359. doi: 10.1002/bimj.202100359. Epub 2023 Apr 5.
Data-driven methods for personalizing treatment assignment have garnered much attention from clinicians and researchers. Dynamic treatment regimes formalize this through a sequence of decision rules that map individual patient characteristics to a recommended treatment. Observational studies are commonly used for estimating dynamic treatment regimes due to the potentially prohibitive costs of conducting sequential multiple assignment randomized trials. However, estimating a dynamic treatment regime from observational data can lead to bias in the estimated regime due to unmeasured confounding. Sensitivity analyses are useful for assessing how robust the conclusions of the study are to a potential unmeasured confounder. A Monte Carlo sensitivity analysis is a probabilistic approach that involves positing and sampling from distributions for the parameters governing the bias. We propose a method for performing a Monte Carlo sensitivity analysis of the bias due to unmeasured confounding in the estimation of dynamic treatment regimes. We demonstrate the performance of the proposed procedure with a simulation study and apply it to an observational study examining tailoring the use of antidepressant medication for reducing symptoms of depression using data from Kaiser Permanente Washington.
数据驱动的个性化治疗分配方法引起了临床医生和研究人员的广泛关注。动态治疗方案通过一系列决策规则将患者个体特征映射到推荐的治疗方法,从而使这一方法正式化。由于进行序贯多项随机试验的潜在成本过高,观察性研究通常用于估计动态治疗方案。然而,由于未测量的混杂因素,从观察性数据中估计动态治疗方案可能会导致估计方案存在偏差。敏感性分析对于评估研究结论对潜在未测量混杂因素的稳健性非常有用。蒙特卡罗敏感性分析是一种概率方法,涉及假设和从用于控制偏差的参数的分布中进行抽样。我们提出了一种方法,用于对动态治疗方案估计中未测量混杂因素引起的偏差进行蒙特卡罗敏感性分析。我们通过模拟研究演示了所提出程序的性能,并将其应用于观察性研究,该研究使用 Kaiser Permanente Washington 的数据,考察了针对抑郁症症状调整使用抗抑郁药物的情况。