Sankaranarayanan Rajan, Saxena Priti, Marathe Uttara B, Gokhale Rajesh S, Shanmugam Vellaiah M, Rukmini Raju
Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
Nat Struct Mol Biol. 2004 Sep;11(9):894-900. doi: 10.1038/nsmb809. Epub 2004 Aug 1.
The superfamily of plant and bacterial type III polyketide synthases (PKSs) produces diverse metabolites with distinct biological functions. PKS18, a type III PKS from Mycobacterium tuberculosis, displays an unusual broad specificity for aliphatic long-chain acyl-coenzyme A (acyl-CoA) starter units (C(6)-C(20)) to produce tri- and tetraketide pyrones. The crystal structure of PKS18 reveals a 20 A substrate binding tunnel, hitherto unidentified in this superfamily of enzymes. This remarkable tunnel extends from the active site to the surface of the protein and is primarily generated by subtle changes of backbone dihedral angles in the core of the protein. Mutagenic studies combined with structure determination provide molecular insights into the structural elements that contribute to the chain length specificity of the enzyme. This first bacterial type III PKS structure underlines a fascinating example of the way in which subtle changes in protein architecture can generate metabolite diversity in nature.
植物和细菌III型聚酮合酶(PKSs)超家族产生具有不同生物学功能的多种代谢产物。结核分枝杆菌的III型PKS——PKS18,对脂肪族长链酰基辅酶A(酰基-CoA)起始单元(C(6)-C(20))表现出不同寻常的广泛特异性,以产生三酮和四酮吡喃。PKS18的晶体结构揭示了一个20 Å的底物结合通道,这在该酶超家族中迄今尚未被发现。这个显著的通道从活性位点延伸到蛋白质表面,主要由蛋白质核心中主链二面角的细微变化产生。诱变研究与结构测定相结合,为有助于该酶链长特异性的结构元件提供了分子见解。这首个细菌III型PKS结构突出了一个引人入胜的例子,即蛋白质结构的细微变化能够在自然界中产生代谢产物多样性的方式。