State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, PR China.
Institute of Chemical Biology, Shenzhen Bay Laboratory, Gaoke Innovation Center, Shenzhen, PR China.
Protein Sci. 2024 Oct;33(10):e5130. doi: 10.1002/pro.5130.
Type III polyketide synthases (PKSs) catalyze the formation of a variety of polyketide natural products with remarkable structural diversity and biological activities. Despite significant progress in structural and mechanistic studies of type III PKSs in bacteria, fungi, and plants, research on type III PKSs in cyanobacteria is lacking. Here, we report structural and mechanistic insights into CylI, a type III PKS that catalyzes the formation of the alkylresorcinol intermediate in cylindrocyclophane biosynthesis. The crystal structure of apo-CylI reveals a distinct arrangement of structural elements that are proximal to the active site. We further solved the crystal structures of CylI in complexes with two substrate analogues at resolutions of 1.9 Å. The complex structures indicate that N259 is the key residue that determines the substrate preference of CylI. We also solved the crystal structure of CylI complexed with the alkylresorcinol product at a resolution of 2.0 Å. Structural analysis and mutagenesis experiments suggested that S170 functions as a key residue that determines cyclization specificity. On the basis of this result, a double mutant was engineered to completely switch the cyclization of CylI from aldol condensation to lactonization. This work elucidates the molecular basis of type III PKS in cyanobacteria and lays the foundation for engineering CylI-like enzymes to generate new products.
III 型聚酮合酶(PKSs)催化形成具有显著结构多样性和生物活性的各种聚酮天然产物。尽管在细菌、真菌和植物中的 III 型 PKS 的结构和机制研究方面取得了重大进展,但关于蓝藻中的 III 型 PKS 的研究还很缺乏。在这里,我们报告了 CylI 的结构和机制见解,CylI 是一种 III 型 PKS,它催化圆柱环烷生物合成中烷基间苯二酚中间体的形成。apo-CylI 的晶体结构揭示了与活性位点附近的结构元素的独特排列。我们进一步解决了与两种底物类似物在分辨率为 1.9Å 的复合物的 CylI 的晶体结构。复合物结构表明 N259 是决定 CylI 底物偏好的关键残基。我们还解决了与烷基间苯二酚产物复合物的 CylI 的晶体结构,分辨率为 2.0Å。结构分析和突变实验表明,S170 是决定环化特异性的关键残基。基于这一结果,设计了一个双突变体,可完全将 CylI 的环化从醛缩合转换为内酯化。这项工作阐明了蓝藻中 III 型 PKS 的分子基础,并为工程化 CylI 样酶以产生新产物奠定了基础。