Kato Mamoru, Hata Naoya, Banerjee Nilanjana, Futcher Bruce, Zhang Michael Q
Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan.
Genome Biol. 2004;5(8):R56. doi: 10.1186/gb-2004-5-8-r56. Epub 2004 Jul 28.
Combinatorial interaction of transcription factors (TFs) is important for gene regulation. Although various genomic datasets are relevant to this issue, each dataset provides relatively weak evidence on its own. Developing methods that can integrate different sequence, expression and localization data have become important.
Here we use a novel method that integrates chromatin immunoprecipitation (ChIP) data with microarray expression data and with combinatorial TF-motif analysis. We systematically identify combinations of transcription factors and of motifs. The various combinations of TFs involved multiple binding mechanisms. We reconstruct a new combinatorial regulatory map of the yeast cell cycle in which cell-cycle regulation can be drawn as a chain of extended TF modules. We find that the pairwise combination of a TF for an early cell-cycle phase and a TF for a later phase is often used to control gene expression at intermediate times. Thus the number of distinct times of gene expression is greater than the number of transcription factors. We also see that some TF modules control branch points (cell-cycle entry and exit), and in the presence of appropriate signals they can allow progress along alternative pathways.
Combining different data sources can increase statistical power as demonstrated by detecting TF interactions and composite TF-binding motifs. The original picture of a chain of simple cell-cycle regulators can be extended to a chain of composite regulatory modules: different modules may share a common TF component in the same pathway or a TF component cross-talking to other pathways.
转录因子(TFs)的组合相互作用对基因调控很重要。尽管各种基因组数据集与这个问题相关,但每个数据集本身提供的证据相对较弱。开发能够整合不同序列、表达和定位数据的方法变得很重要。
在这里,我们使用一种新颖的方法,将染色质免疫沉淀(ChIP)数据与微阵列表达数据以及组合TF-基序分析相结合。我们系统地识别转录因子和基序的组合。所涉及的TF的各种组合具有多种结合机制。我们重建了酵母细胞周期的新组合调控图谱,其中细胞周期调控可以绘制成一系列扩展的TF模块。我们发现,早期细胞周期阶段的TF与后期阶段的TF的成对组合通常用于在中间时间控制基因表达。因此,基因表达的不同时间数量大于转录因子的数量。我们还看到,一些TF模块控制分支点(细胞周期进入和退出),并且在存在适当信号的情况下,它们可以允许沿着替代途径进展。
如通过检测TF相互作用和复合TF结合基序所证明的,结合不同数据源可以提高统计效力。简单细胞周期调节因子链的原始图景可以扩展为复合调节模块链:不同模块可能在同一途径中共享一个共同的TF成分,或者一个TF成分与其他途径相互作用。