Suppr超能文献

基于转录因子之间的蛋白质-蛋白质相互作用预测长程增强子调控。

Predict long-range enhancer regulation based on protein-protein interactions between transcription factors.

机构信息

Department of Computational Mathematics, Science and Engineering, Michigan State University, 428 S. Shaw Ln., East Lansing, MI 48824, USA.

出版信息

Nucleic Acids Res. 2021 Oct 11;49(18):10347-10368. doi: 10.1093/nar/gkab841.

Abstract

Long-range regulation by distal enhancers plays critical roles in cell-type specific transcriptional programs. Computational predictions of genome-wide enhancer-promoter interactions are still challenging due to limited accuracy and the lack of knowledge on the molecular mechanisms. Based on recent biological investigations, the protein-protein interactions (PPIs) between transcription factors (TFs) have been found to participate in the regulation of chromatin loops. Therefore, we developed a novel predictive model for cell-type specific enhancer-promoter interactions by leveraging the information of TF PPI signatures. Evaluated by a series of rigorous performance comparisons, the new model achieves superior performance over other methods. The model also identifies specific TF PPIs that may mediate long-range regulatory interactions, revealing new mechanistic understandings of enhancer regulation. The prioritized TF PPIs are associated with genes in distinct biological pathways, and the predicted enhancer-promoter interactions are strongly enriched with cis-eQTLs. Most interestingly, the model discovers enhancer-mediated trans-regulatory links between TFs and genes, which are significantly enriched with trans-eQTLs. The new predictive model, along with the genome-wide analyses, provides a platform to systematically delineate the complex interplay among TFs, enhancers and genes in long-range regulation. The novel predictions also lead to mechanistic interpretations of eQTLs to decode the genetic associations with gene expression.

摘要

远端增强子的长程调控在细胞类型特异性转录程序中起着关键作用。由于准确性有限以及对分子机制缺乏了解,全基因组增强子-启动子相互作用的计算预测仍然具有挑战性。基于最近的生物学研究,发现转录因子(TFs)之间的蛋白质-蛋白质相互作用(PPIs)参与了染色质环的调控。因此,我们通过利用 TF PPI 特征的信息,开发了一种用于细胞类型特异性增强子-启动子相互作用的新型预测模型。通过一系列严格的性能比较评估,该新模型的性能优于其他方法。该模型还确定了可能介导长程调控相互作用的特定 TF PPI,揭示了增强子调控的新机制理解。优先 TF PPI 与不同生物学途径中的基因相关,预测的增强子-启动子相互作用强烈富集 cis-eQTLs。最有趣的是,该模型发现了 TF 和基因之间的增强子介导的跨调控联系,这些联系与 trans-eQTLs 显著富集。新的预测模型以及全基因组分析为系统描绘长程调控中 TF、增强子和基因之间的复杂相互作用提供了一个平台。新的预测还导致了对 eQTL 的机制解释,以解码与基因表达相关的遗传关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d30/8501976/c77ae01ebf51/gkab841fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验