Suppr超能文献

RAPTOR:通过线性规划实现的最优蛋白质穿线法

RAPTOR: optimal protein threading by linear programming.

作者信息

Xu Jinbo, Li Ming, Kim Dongsup, Xu Ying

机构信息

Department of Computer Science, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada.

出版信息

J Bioinform Comput Biol. 2003 Apr;1(1):95-117. doi: 10.1142/s0219720003000186.

Abstract

This paper presents a novel linear programming approach to do protein 3-dimensional (3D) structure prediction via threading. Based on the contact map graph of the protein 3D structure template, the protein threading problem is formulated as a large scale integer programming (IP) problem. The IP formulation is then relaxed to a linear programming (LP) problem, and then solved by the canonical branch-and-bound method. The final solution is globally optimal with respect to energy functions. In particular, our energy function includes pairwise interaction preferences and allowing variable gaps which are two key factors in making the protein threading problem NP-hard. A surprising result is that, most of the time, the relaxed linear programs generate integral solutions directly. Our algorithm has been implemented as a software package RAPTOR-RApid Protein Threading by Operation Research technique. Large scale benchmark test for fold recognition shows that RAPTOR significantly outperforms other programs at the fold similarity level. The CAFASP3 evaluation, a blind and public test by the protein structure prediction community, ranks RAPTOR as top 1, among individual prediction servers, in terms of the recognition capability and alignment accuracy for Fold Recognition (FR) family targets. RAPTOR also performs very well in recognizing the hard Homology Modeling (HM) targets. RAPTOR was implemented at the University of Waterloo and it can be accessed at http://www.cs.uwaterloo.ca/~j3xu/RAPTOR_form.htm.

摘要

本文提出了一种新颖的线性规划方法,通过穿线法进行蛋白质三维(3D)结构预测。基于蛋白质3D结构模板的接触图,蛋白质穿线问题被表述为一个大规模整数规划(IP)问题。然后将该IP公式松弛为一个线性规划(LP)问题,接着通过规范的分支定界法求解。最终解在能量函数方面是全局最优的。特别地,我们的能量函数包括成对相互作用偏好并允许可变间隙,这是使蛋白质穿线问题成为NP难问题的两个关键因素。一个令人惊讶的结果是,大多数时候,松弛后的线性规划直接生成整数解。我们的算法已通过运筹学技术实现为一个软件包RAPTOR - 快速蛋白质穿线。大规模的折叠识别基准测试表明,在折叠相似性水平上,RAPTOR显著优于其他程序。蛋白质结构预测社区的一项盲测和公开测试CAFASP3评估中,在单个预测服务器中,就折叠识别(FR)家族目标的识别能力和比对准确性而言,RAPTOR排名第一。RAPTOR在识别困难的同源建模(HM)目标方面也表现出色。RAPTOR是在滑铁卢大学实现的,可通过http://www.cs.uwaterloo.ca/~j3xu/RAPTOR_form.htm访问。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验