Suppr超能文献

使用接触辅助对接评估低同源性蛋白质建模中接触图的意义。

Evaluating the significance of contact maps in low-homology protein modeling using contact-assisted threading.

机构信息

Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, 36849, USA.

Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.

出版信息

Sci Rep. 2020 Feb 19;10(1):2908. doi: 10.1038/s41598-020-59834-2.

Abstract

The development of improved threading algorithms for remote homology modeling is a critical step forward in template-based protein structure prediction. We have recently demonstrated the utility of contact information to boost protein threading by developing a new contact-assisted threading method. However, the nature and extent to which the quality of a predicted contact map impacts the performance of contact-assisted threading remains elusive. Here, we systematically analyze and explore this interdependence by employing our newly-developed contact-assisted threading method over a large-scale benchmark dataset using predicted contact maps from four complementary methods including direct coupling analysis (mfDCA), sparse inverse covariance estimation (PSICOV), classical neural network-based meta approach (MetaPSICOV), and state-of-the-art ultra-deep learning model (RaptorX). Experimental results demonstrate that contact-assisted threading using high-quality contacts having the Matthews Correlation Coefficient (MCC) ≥ 0.5 improves threading performance in nearly 30% cases, while low-quality contacts with MCC <0.35 degrades the performance for 50% cases. This holds true even in CASP13 dataset, where threading using high-quality contacts (MCC ≥ 0.5) significantly improves the performance of 22 instances out of 29. Collectively, our study uncovers the mutual association between the quality of predicted contacts and its possible utility in boosting threading performance for improving low-homology protein modeling.

摘要

改进远程同源建模的线程算法的发展是基于模板的蛋白质结构预测向前迈出的关键一步。我们最近通过开发一种新的接触辅助线程方法证明了接触信息在提高蛋白质线程方面的实用性。然而,预测接触图的质量对接触辅助线程性能的影响的性质和程度仍然难以捉摸。在这里,我们通过使用四种互补方法(直接耦合分析(mfDCA)、稀疏逆协方差估计(PSICOV)、基于经典神经网络的元方法(MetaPSICOV)和最先进的超深度学习模型(RaptorX))从四个互补方法中预测接触图,在大规模基准数据集上使用我们新开发的接触辅助线程方法对这种相互依存关系进行了系统的分析和探索。实验结果表明,使用马修斯相关系数(MCC)≥0.5 的高质量接触进行接触辅助线程可以在近 30%的情况下提高线程性能,而 MCC<0.35 的低质量接触则会降低 50%的情况的性能。即使在 CASP13 数据集上,使用高质量接触(MCC≥0.5)进行线程也可以显著提高 29 个实例中的 22 个实例的性能。总的来说,我们的研究揭示了预测接触的质量与其在提高低同源蛋白质建模中提高线程性能方面的可能效用之间的相互关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6eb4/7031282/f8a55909c0fe/41598_2020_59834_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验