Suppr超能文献

荧光相关光谱法揭示了模型膜和天然膜中的筏结构。

Fluorescence correlation spectroscopy relates rafts in model and native membranes.

作者信息

Bacia Kirsten, Scherfeld Dag, Kahya Nicoletta, Schwille Petra

机构信息

Dresden University of Technology, Department of Biophysics, c/o Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.

出版信息

Biophys J. 2004 Aug;87(2):1034-43. doi: 10.1529/biophysj.104.040519.

Abstract

The lipid raft model has evoked a new perspective on membrane biology. Understanding the structure and dynamics of lipid domains could be a key to many crucial membrane-associated processes in cells. However, one shortcoming in the field is the lack of routinely applicable techniques to measure raft association without perturbation by detergents. We show that both in cell and in domain-exhibiting model membranes, fluorescence correlation spectroscopy (FCS) can easily distinguish a raft marker (cholera toxin B subunit bound to ganglioside (GM1) and a nonraft marker (dialkylcarbocyanine dye diI)) by their decidedly different diffusional mobilities. In contrast, these markers exhibit only slightly different mobilities in a homogeneous artificial membrane. Performing cholesterol depletion with methyl-beta-cyclodextrin, which disrupts raft organization, we find an analogous effect of reduced mobility for the nonraft marker in domain-exhibiting artificial membranes and in cell membranes. In contrast, cholesterol depletion has differential effects on the raft marker, cholera toxin B subunit-GM1, rendering it more mobile in artificial domain-exhibiting membranes but leaving it immobile in cell membranes, where cytoskeleton disruption is required to achieve higher mobility. Thus, fluorescence correlation spectroscopy promises to be a valuable tool to elucidate lipid raft associations in native cells and to gain deeper insight into the correspondence between model and natural membranes.

摘要

脂筏模型引发了膜生物学的新视角。了解脂类结构域的结构和动力学可能是细胞中许多关键膜相关过程的关键。然而,该领域的一个缺点是缺乏常规适用的技术来测量脂筏结合,而不受去污剂的干扰。我们表明,在细胞和展示结构域的模型膜中,荧光相关光谱法(FCS)可以通过明显不同的扩散迁移率轻松区分脂筏标记物(与神经节苷脂(GM1)结合的霍乱毒素B亚基)和非脂筏标记物(二烷基碳菁染料diI)。相比之下,这些标记物在均匀的人工膜中仅表现出略有不同的迁移率。用甲基-β-环糊精进行胆固醇消耗,这会破坏脂筏组织,我们发现在展示结构域的人工膜和细胞膜中,非脂筏标记物的迁移率降低有类似的效果。相比之下,胆固醇消耗对脂筏标记物霍乱毒素B亚基-GM1有不同的影响,使其在展示结构域的人工膜中更具流动性,但在细胞膜中保持不动,在细胞膜中需要破坏细胞骨架才能实现更高的流动性。因此,荧光相关光谱法有望成为阐明天然细胞中脂筏结合并更深入了解模型膜与天然膜之间对应关系的有价值工具。

相似文献

1
Fluorescence correlation spectroscopy relates rafts in model and native membranes.
Biophys J. 2004 Aug;87(2):1034-43. doi: 10.1529/biophysj.104.040519.
2
Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.
Biochim Biophys Acta. 2012 Jul;1818(7):1777-84. doi: 10.1016/j.bbamem.2012.03.007.
3
The alpha1a-adrenergic receptor occupies membrane rafts with its G protein effectors but internalizes via clathrin-coated pits.
J Biol Chem. 2008 Feb 1;283(5):2973-85. doi: 10.1074/jbc.M705795200. Epub 2007 Nov 29.
5
The state of lipid rafts: from model membranes to cells.
Annu Rev Biophys Biomol Struct. 2003;32:257-83. doi: 10.1146/annurev.biophys.32.110601.142439. Epub 2003 Jan 16.
10
Plasma membranes are poised for activation of raft phase coalescence at physiological temperature.
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10005-10. doi: 10.1073/pnas.0804374105. Epub 2008 Jul 9.

引用本文的文献

1
Lipid Rafts in Signalling, Diseases, and Infections: What Can Be Learned from Fluorescence Techniques?
Membranes (Basel). 2025 Jan 1;15(1):6. doi: 10.3390/membranes15010006.
3
Leaflet by Leaflet Synergistic Effects of Antimicrobial Peptides on Bacterial and Mammalian Membrane Models.
J Phys Chem Lett. 2023 Apr 27;14(16):3920-3928. doi: 10.1021/acs.jpclett.3c00119. Epub 2023 Apr 19.
4
Bacterial lipid biophysics and membrane organization.
Curr Opin Microbiol. 2023 Aug;74:102315. doi: 10.1016/j.mib.2023.102315. Epub 2023 Apr 13.
5
Biocompatible and optically stable hydrophobic fluorescent carbon dots for isolation and imaging of lipid rafts in model membrane.
Anal Bioanal Chem. 2022 Aug;414(20):6055-6067. doi: 10.1007/s00216-022-04165-6. Epub 2022 Jun 14.
7
Heptanol-mediated phase separation determines phase preference of molecules in live cell membranes.
J Lipid Res. 2022 Jun;63(6):100220. doi: 10.1016/j.jlr.2022.100220. Epub 2022 Apr 28.
8
Chitosan-covered liposomes as a promising drug transporter: nanoscale investigations.
RSC Adv. 2021 Jan 5;11(3):1503-1516. doi: 10.1039/d0ra08305d. eCollection 2021 Jan 4.
9
Transbilayer Coupling of Lipids in Cells Investigated by Imaging Fluorescence Correlation Spectroscopy.
J Phys Chem B. 2022 Mar 31;126(12):2325-2336. doi: 10.1021/acs.jpcb.2c00117. Epub 2022 Mar 16.
10
Curvature-Mediated Forces on Elastic Inclusions in Fluid Interfaces.
Langmuir. 2022 Jan 25;38(3):1099-1105. doi: 10.1021/acs.langmuir.1c02709. Epub 2022 Jan 11.

本文引用的文献

2
Lipid rafts: elusive or illusive?
Cell. 2003 Nov 14;115(4):377-88. doi: 10.1016/s0092-8674(03)00882-1.
3
Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension.
Nature. 2003 Oct 23;425(6960):821-4. doi: 10.1038/nature02013.
4
Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy.
J Biol Chem. 2003 Jul 25;278(30):28109-15. doi: 10.1074/jbc.M302969200. Epub 2003 May 7.
5
Resistance of cell membranes to different detergents.
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5795-800. doi: 10.1073/pnas.0631579100. Epub 2003 Apr 29.
8
Liquid-liquid immiscibility in membranes.
Annu Rev Biophys Biomol Struct. 2003;32:469-92. doi: 10.1146/annurev.biophys.32.110601.141704. Epub 2003 Jan 31.
9
Single molecule fluorescence and force microscopy.
Exp Gerontol. 2002 Dec;37(12):1495-511. doi: 10.1016/s0531-5565(02)00124-9.
10
The state of lipid rafts: from model membranes to cells.
Annu Rev Biophys Biomol Struct. 2003;32:257-83. doi: 10.1146/annurev.biophys.32.110601.142439. Epub 2003 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验