Chang Christopher J, Loh Zhi-Heng, Shi Chunnian, Anson Fred C, Nocera Daniel G
Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
J Am Chem Soc. 2004 Aug 18;126(32):10013-20. doi: 10.1021/ja049115j.
A combined experimental and theoretical investigation of the role of proton delivery in determining O2 reduction pathways catalyzed by cofacial bisporphyrins is presented. A homologous family of dicobalt(II) Pacman porphyrins anchored by xanthene [Co2(DPX) (1) and Co2(DPXM) (3)] and dibenzofuran [Co2(DPD) (2) and Co2(DPDM) (4)] have been synthesized, characterized, and evaluated as catalysts for the direct four-proton, four-electron reduction of O2 to H2O. Structural analysis of the intramolecular diiron(III) mu-oxo complex Fe2O(DPXM) (5) and electrochemical measurements of 1-4 establish that Pacman derivatives bearing an aryl group trans to the spacer possess structural flexibilities and redox properties similar to those of their parent counterparts; however, these trans-aryl catalysts exhibit markedly reduced selectivities for the direct reduction of O2 to H2O over the two-proton, two-electron pathway to H2O2. Density functional theory calculations reveal that trans-aryl substitution results in inefficient proton delivery to O2-bound catalysts compared to unsubstituted congeners. In particular, the HOMO of [Co2(DPXM)(O2)]+ disfavors proton transfer to the bound oxygen species, funneling the O-O activation pathway to single-electron chemistry and the production of H2O2, whereas the HOMO of [Co2(DPX)(O2)]+ directs protonation to the [Co2O2] core to facilitate subsequent multielectron O-O bond activation to generate two molecules of H2O. Our findings highlight the importance of controlling both proton and electron inventories for specific O-O bond activation and offer a unified model for O-O bond activation within the clefts of bimetallic porphyrins.
本文介绍了一项关于质子传递在决定由共面双卟啉催化的O₂还原途径中作用的实验与理论相结合的研究。合成了由氧杂蒽([Co₂(DPX)(1)和Co₂(DPXM)(3)])和二苯并呋喃([Co₂(DPD)(2)和Co₂(DPDM)(4)])锚定的二钴(II) Pacman卟啉的同系物家族,对其进行了表征,并评估其作为将O₂直接四质子、四电子还原为H₂O的催化剂。对分子内二铁(III) μ-氧络合物Fe₂O(DPXM)(5)的结构分析以及对1-4的电化学测量表明,在间隔基反位带有芳基的Pacman衍生物具有与其母体类似的结构灵活性和氧化还原性质;然而,这些反位芳基催化剂在将O₂直接还原为H₂O方面相对于两质子、两电子生成H₂O₂的途径表现出明显降低的选择性。密度泛函理论计算表明,与未取代的同系物相比,反位芳基取代导致质子向O₂结合催化剂的传递效率低下。特别是,[Co₂(DPXM)(O₂)]⁺的最高占据分子轨道不利于质子转移至结合的氧物种上,使O - O活化途径转向单电子化学并生成H₂O₂,而[Co₂(DPX)(O₂)]⁺的最高占据分子轨道则将质子导向[Co₂O₂]核心,以促进随后的多电子O - O键活化以生成两分子H₂O。我们的研究结果突出了控制质子和电子存量对于特定O - O键活化的重要性,并为双金属卟啉裂隙内的O - O键活化提供了一个统一模型。