Suppr超能文献

锰和钴在血红素铜氧化酶超家族生物合成模型的非血红素金属结合部位通过氧化还原非活性机制赋予氧化酶活性。

Manganese and Cobalt in the Nonheme-Metal-Binding Site of a Biosynthetic Model of Heme-Copper Oxidase Superfamily Confer Oxidase Activity through Redox-Inactive Mechanism.

机构信息

Department of Biomedical Engineering, Chemistry, and Biological Sciences, Stevens Institute of Technology , Hoboken, New Jersey 07030, United States.

Division of Environmental & Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University , Portland, Oregon 97239, United States.

出版信息

J Am Chem Soc. 2017 Sep 6;139(35):12209-12218. doi: 10.1021/jacs.7b05800. Epub 2017 Aug 25.

Abstract

The presence of a nonheme metal, such as copper and iron, in the heme-copper oxidase (HCO) superfamily is critical to the enzymatic activity of reducing O to HO, but the exact mechanism the nonheme metal ion uses to confer and fine-tune the activity remains to be understood. We herein report that manganese and cobalt can bind to the same nonheme site and confer HCO activity in a heme-nonheme biosynthetic model in myoglobin. While the initial rates of O reduction by the Mn, Fe, and Co derivatives are similar, the percentages of reactive oxygen species (ROS) formation are 7%, 4%, and 1% and the total turnovers are 5.1 ± 1.1, 13.4 ± 0.7, and 82.5 ± 2.5, respectively. These results correlate with the trends of nonheme-metal-binding dissociation constants (35, 22, and 9 μM) closely, suggesting that tighter metal binding can prevent ROS release from the active site, lessen damage to the protein, and produce higher total turnover numbers. Detailed spectroscopic, electrochemical, and computational studies found no evidence of redox cycling of manganese or cobalt in the enzymatic reactions and suggest that structural and electronic effects related to the presence of different nonheme metals lead to the observed differences in reactivity. This study of the roles of nonheme metal ions beyond the Cu and Fe found in native enzymes has provided deeper insights into nature's choice of metal ion and reaction mechanism and allows for finer control of the enzymatic activity, which is a basis for the design of efficient catalysts for the oxygen reduction reaction in fuel cells.

摘要

血红素-铜氧化酶(HCO)超家族中存在非血红素金属,如铜和铁,对将 O 还原为 HO 的酶活性至关重要,但非血红素金属离子用来赋予和微调活性的确切机制仍有待理解。在此,我们报告锰和钴可以结合到同一个非血红素位点,并在肌红蛋白的血红素-非血红素生物合成模型中赋予 HCO 活性。虽然 Mn、Fe 和 Co 衍生物的初始 O 还原速率相似,但活性氧(ROS)形成的百分比分别为 7%、4%和 1%,总周转率分别为 5.1±1.1、13.4±0.7 和 82.5±2.5。这些结果与非血红素金属结合解离常数(35、22 和 9 μM)的趋势密切相关,表明更紧密的金属结合可以防止活性位点释放 ROS,减轻对蛋白质的损害,并产生更高的总周转率数。详细的光谱、电化学和计算研究发现,在酶反应中没有发现锰或钴的氧化还原循环的证据,并表明与存在不同非血红素金属相关的结构和电子效应导致了观察到的反应性差异。对天然酶中发现的 Cu 和 Fe 以外的非血红素金属离子的作用的研究,为深入了解金属离子和反应机制的自然选择提供了依据,并允许对酶活性进行更精细的控制,这是设计燃料电池中氧还原反应高效催化剂的基础。

相似文献

2
Rational Design of an Artificial Metalloenzyme by Constructing a Metal-Binding Site Close to the Heme Cofactor in Myoglobin.
Inorg Chem. 2024 Oct 7;63(40):18531-18535. doi: 10.1021/acs.inorgchem.4c03093. Epub 2024 Sep 23.
3
Nitric Oxide Reductase Activity in Heme-Nonheme Binuclear Engineered Myoglobins through a One-Electron Reduction Cycle.
J Am Chem Soc. 2018 Dec 19;140(50):17389-17393. doi: 10.1021/jacs.8b11037. Epub 2018 Dec 6.
5
Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes.
Acc Chem Res. 2014 Apr 15;47(4):1146-54. doi: 10.1021/ar400258p. Epub 2014 Feb 13.
6
Activation of Dioxygen by Iron and Manganese Complexes: A Heme and Nonheme Perspective.
J Am Chem Soc. 2016 Sep 14;138(36):11410-28. doi: 10.1021/jacs.6b05251. Epub 2016 Aug 30.
8
Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
Acc Chem Res. 2019 Apr 16;52(4):935-944. doi: 10.1021/acs.accounts.9b00011. Epub 2019 Mar 26.
10
Synthetic mononuclear nonheme iron-oxygen intermediates.
Acc Chem Res. 2015 Aug 18;48(8):2415-23. doi: 10.1021/acs.accounts.5b00218. Epub 2015 Jul 23.

引用本文的文献

2
Trace Elements in Medicinal Metallomics.
Mini Rev Med Chem. 2025;25(9):664-674. doi: 10.2174/0113895575333766240912162252.
4
5
The Periodic Table's Impact on Bioinorganic Chemistry and Biology's Selective Use of Metal Ions.
Struct Bond. 2019;182:153-173. doi: 10.1007/430_2019_45. Epub 2019 Oct 5.
10
Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
Acc Chem Res. 2019 Apr 16;52(4):935-944. doi: 10.1021/acs.accounts.9b00011. Epub 2019 Mar 26.

本文引用的文献

1
Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases.
Nat Chem. 2017 Mar;9(3):257-263. doi: 10.1038/nchem.2643. Epub 2016 Nov 7.
3
Metal Selectivity of a Cd-, Co-, and Zn-Transporting P-type ATPase.
Biochemistry. 2017 Jan 10;56(1):85-95. doi: 10.1021/acs.biochem.6b01022. Epub 2016 Dec 21.
4
Direct visualization of a Fe(IV)-OH intermediate in a heme enzyme.
Nat Commun. 2016 Nov 29;7:13445. doi: 10.1038/ncomms13445.
5
De Novo Design of Metalloproteins and Metalloenzymes in a Three-Helix Bundle.
Methods Mol Biol. 2016;1414:187-96. doi: 10.1007/978-1-4939-3569-7_11.
6
Design of Catalytic Peptides and Proteins Through Rational and Combinatorial Approaches.
Annu Rev Biomed Eng. 2016 Jul 11;18:311-28. doi: 10.1146/annurev-bioeng-111215-024421. Epub 2016 Mar 23.
9
Structural and spectroscopic characterisation of a heme peroxidase from sorghum.
J Biol Inorg Chem. 2016 Mar;21(1):63-70. doi: 10.1007/s00775-015-1313-z. Epub 2015 Dec 14.
10
A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme.
J Am Chem Soc. 2015 Sep 16;137(36):11570-3. doi: 10.1021/jacs.5b07119. Epub 2015 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验