Suppr超能文献

药品上市后早期安全性监测:数据挖掘需考虑的要点

Early postmarketing drug safety surveillance: data mining points to consider.

作者信息

Hauben Manfred

机构信息

Risk Management Strategy, Pfizer Inc, New York, NY, USA.

出版信息

Ann Pharmacother. 2004 Oct;38(10):1625-30. doi: 10.1345/aph.1E023. Epub 2004 Aug 10.

Abstract

BACKGROUND

Computer-assisted data mining algorithms (DMAs) are being studied to screen spontaneous reporting databases for signals of novel adverse events. The performance characteristics and optimum deployment of these techniques remain to be established.

OBJECTIVE

To explore issues in the practical evaluation and deployment of DMAs by comparing findings from an empirical Bayesian DMA with those from a traditional drug safety surveillance program.

METHODS

Published findings from early postmarketing safety surveillance of thalidomide were compared with findings from an empirical Bayesian DMA. Differential results were used to explore practical issues in the evaluation and deployment of DMAs.

RESULTS

Most adverse events highlighted by each method were compatible with the product labeling or natural history/complications of reported treatment indications. Traditional surveillance highlighted 4 potentially serious and unexpected adverse events (Stevens-Johnson syndrome, toxic epidermal necrolysis, seizures, skin ulcers) warranting labeling amendments or close monitoring. None of these adverse event terms generated a signal using the DMA.

CONCLUSIONS

The DMA would not have enhanced early postmarketing surveillance in this particular setting. While the results cannot be used to draw inferences about the global performance of DMAs, they illustrate the following: (1) DMA performance may be highly situation dependent; (2) over-reliance on these methods may have deleterious consequences, especially with so-called "designated medical events"; and (3) the most appropriate selection of pharmacovigilance tools needs to be tailored to each situation, being mindful of the numerous factors that may influence comparative performance and incremental utility of DMAs.

摘要

背景

正在研究计算机辅助数据挖掘算法(DMA),以筛查自发报告数据库中的新型不良事件信号。这些技术的性能特征和最佳应用方式仍有待确定。

目的

通过比较经验贝叶斯DMA与传统药物安全监测计划的结果,探讨DMA实际评估和应用中的问题。

方法

将已发表的沙利度胺上市后早期安全监测结果与经验贝叶斯DMA的结果进行比较。利用不同的结果探讨DMA评估和应用中的实际问题。

结果

每种方法突出显示的大多数不良事件与产品标签或报告治疗适应症的自然病史/并发症相符。传统监测突出了4种潜在的严重且意外的不良事件(史蒂文斯-约翰逊综合征、中毒性表皮坏死松解症、癫痫发作、皮肤溃疡),需要修改标签或密切监测。使用DMA时,这些不良事件术语均未产生信号。

结论

在这种特定情况下,DMA不会增强上市后早期监测。虽然这些结果不能用于推断DMA的整体性能,但它们说明了以下几点:(1)DMA的性能可能高度依赖于具体情况;(2)过度依赖这些方法可能会产生有害后果,尤其是对于所谓的“指定医疗事件”;(3)药物警戒工具的最恰当选择需要根据每种情况进行调整,同时要考虑到可能影响DMA比较性能和增量效用的众多因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验