Suppr超能文献

通过确定性退火进行蛋白质结构比对。

Protein structure alignment by deterministic annealing.

作者信息

Chen Luonan, Zhou Tianshou, Tang Yun

机构信息

Department of Electrical Engineering and Electronics, Osaka Sangyo University, Osaka 574-8530, Japan.

出版信息

Bioinformatics. 2005 Jan 1;21(1):51-62. doi: 10.1093/bioinformatics/bth467. Epub 2004 Aug 12.

Abstract

MOTIVATION

Protein structure alignment is one of the most important computational problems in molecular biology and plays a key role in protein structure prediction, fold family classification, motif finding, phylogenetic tree reconstruction and so on. From the viewpoint of computational complexity, a pairwise structure alignment is also a NP-hard problem, in contrast to the polynomial time algorithm for a pairwise sequence alignment.

RESULTS

We propose a method for solving the structure alignment problem in an accurate manner at the amino acid level, based on a mean field annealing technique. We define the structure alignment as a mixed integer-programming (MIP) problem. By avoiding complicated combinatorial computation and exploiting the special structure of the continuous partial problem, we transform the MIP into a reduced non-linear continuous optimization problem (NCOP) with a much simpler form. To optimize the reduced NCOP, a mean field annealing procedure is adopted with a modified Potts model, whose solution is generally identical to that of the MIP. There is no 'soft constraint' in our mean field model and all constraints are automatically satisfied throughout the annealing process, thereby not only making the optimization more efficient but also eliminating many unnecessary parameters that depend on problems and usually require careful tuning. A number of benchmark examples are tested by the proposed method with comparisons to several existing approaches.

摘要

动机

蛋白质结构比对是分子生物学中最重要的计算问题之一,在蛋白质结构预测、折叠家族分类、基序发现、系统发育树重建等方面发挥着关键作用。从计算复杂性的角度来看,与成对序列比对的多项式时间算法不同,成对结构比对也是一个NP难问题。

结果

我们提出了一种基于平均场退火技术在氨基酸水平上精确解决结构比对问题的方法。我们将结构比对定义为一个混合整数规划(MIP)问题。通过避免复杂的组合计算并利用连续部分问题的特殊结构,我们将MIP转化为一个形式简单得多的简化非线性连续优化问题(NCOP)。为了优化简化后的NCOP,采用了带有修改后的Potts模型的平均场退火过程,其解通常与MIP的解相同。我们的平均场模型中没有“软约束”,并且在整个退火过程中所有约束都能自动满足,从而不仅使优化更高效,还消除了许多依赖于问题且通常需要仔细调整的不必要参数。所提出的方法对多个基准示例进行了测试,并与几种现有方法进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验