Suppr超能文献

从无顺序依赖表面配准看酶结合口袋的结构特征:金属内肽酶和 NAD 结合蛋白研究。

Structural signatures of enzyme binding pockets from order-independent surface alignment: a study of metalloendopeptidase and NAD binding proteins.

机构信息

Department of Bioengineering, University of Illinois at Chicago, 835 South Wolcott, Chicago, IL 60612, USA.

出版信息

J Mol Biol. 2011 Mar 11;406(5):713-29. doi: 10.1016/j.jmb.2010.12.005. Epub 2010 Dec 9.

Abstract

Detecting similarities between local binding surfaces can facilitate identification of enzyme binding sites and prediction of enzyme functions, and aid in our understanding of enzyme mechanisms. Constructing a template of local surface characteristics for a specific enzyme function or binding activity is a challenging task, as the size and shape of the binding surfaces of a biochemical function often vary. Here we introduce the concept of signature binding pockets, which captures information on preserved and varied atomic positions at multiresolution levels. For proteins with complex enzyme binding and activity, multiple signatures arise naturally in our model, forming a signature basis set that characterizes this class of proteins. Both signatures and signature basis sets can be automatically constructed by a method called SOLAR (Signature Of Local Active Regions). This method is based on a sequence-order-independent alignment of computed binding surface pockets. SOLAR also provides a structure-based multiple sequence fragment alignment to facilitate the interpretation of computed signatures. By studying a family of evolutionarily related proteins, we show that for metzincin metalloendopeptidase, which has a broad spectrum of substrate binding, signature and basis set pockets can be used to discriminate metzincins from other enzymes, to predict the subclass of metzincins functions, and to identify specific binding surfaces. Studying unrelated proteins that have evolved to bind to the same NAD cofactor, we constructed signatures of NAD binding pockets and used them to predict NAD binding proteins and to locate NAD binding pockets. By measuring preservation ratio and location variation, our method can identify residues and atoms that are important for binding affinity and specificity. In both cases, we show that signatures and signature basis set reveal significant biological insight.

摘要

检测局部结合表面之间的相似性可以促进酶结合位点的识别和酶功能的预测,并有助于我们理解酶的机制。为特定的酶功能或结合活性构建局部表面特征的模板是一项具有挑战性的任务,因为生化功能的结合表面的大小和形状通常会有所不同。在这里,我们引入了特征结合口袋的概念,该概念捕获了多分辨率水平上保留和变化的原子位置的信息。对于具有复杂酶结合和活性的蛋白质,我们的模型中自然会出现多个特征,形成一个特征基组,用于描述这一类蛋白质。特征和特征基组都可以通过一种称为 SOLAR(局部活性区域的特征)的方法自动构建。该方法基于计算结合表面口袋的序列无关对齐。SOLAR 还提供了基于结构的多重序列片段对齐,以方便解释计算出的特征。通过研究一组进化相关的蛋白质,我们表明,对于具有广泛底物结合的金属内肽酶,特征和基组口袋可用于区分金属内肽酶和其他酶,预测金属内肽酶功能的亚类,并识别特定的结合表面。研究进化到结合相同 NAD 辅助因子的不相关蛋白质,我们构建了 NAD 结合口袋的特征,并使用它们来预测 NAD 结合蛋白和定位 NAD 结合口袋。通过测量保留率和位置变化,我们的方法可以识别对结合亲和力和特异性重要的残基和原子。在这两种情况下,我们都表明特征和特征基组揭示了重要的生物学见解。

相似文献

5
Accuracy of functional surfaces on comparatively modeled protein structures.比较建模的蛋白质结构上功能表面的准确性。
J Struct Funct Genomics. 2011 Jul;12(2):97-107. doi: 10.1007/s10969-011-9109-z. Epub 2011 May 4.
7
Catalytic domain architecture of metzincin metalloproteases.金属锌蛋白酶的催化结构域结构
J Biol Chem. 2009 Jun 5;284(23):15353-7. doi: 10.1074/jbc.R800069200. Epub 2009 Feb 5.
10
A second riboswitch class for the enzyme cofactor NAD.第二个酶辅因子 NAD 的核糖开关类。
RNA. 2021 Jan;27(1):99-105. doi: 10.1261/rna.077891.120. Epub 2020 Oct 21.

引用本文的文献

5
Identifying Novel Drug Targets by iDTPnd: A Case Study of Kinase Inhibitors.通过iDTPnd鉴定新型药物靶点:以激酶抑制剂为例
Genomics Proteomics Bioinformatics. 2021 Dec;19(6):986-997. doi: 10.1016/j.gpb.2020.05.006. Epub 2021 Mar 29.

本文引用的文献

5
Topology independent protein structural alignment.拓扑结构无关的蛋白质结构比对
BMC Bioinformatics. 2007 Oct 15;8:388. doi: 10.1186/1471-2105-8-388.
7
Shape variation in protein binding pockets and their ligands.蛋白质结合口袋及其配体的形状变化。
J Mol Biol. 2007 Apr 20;368(1):283-301. doi: 10.1016/j.jmb.2007.01.086. Epub 2007 Feb 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验