Suppr超能文献

预测低分辨率结构模型中的金属结合位点残基。

Predicting metal-binding site residues in low-resolution structural models.

作者信息

Sodhi Jaspreet Singh, Bryson Kevin, McGuffin Liam J, Ward Jonathan J, Wernisch Lorenz, Jones David T

机构信息

Bioinformatics Unit, Department of Computer Science, University College London, Gower Street, WC1E 6BT, UK.

出版信息

J Mol Biol. 2004 Sep 3;342(1):307-20. doi: 10.1016/j.jmb.2004.07.019.

Abstract

The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.

摘要

鉴于结构数据库和序列数据库前所未有的增长,准确预测蛋白质的生化功能变得越来越重要。因此,需要计算方法以自动化方式分析此类数据,以确保对基因组进行准确注释。例如,蛋白质结构预测方法能够在全基因组范围内生成近似的结构模型。然而,在如此粗糙的模型以及结构基因组学目标中检测功能重要区域仍然是一个极其重要的问题。当前研究中描述的方法MetSite,代表了一种用于检测适用于中等质量蛋白质模型的金属结合残基簇的全自动方法。该方法涉及结合使用序列概况信息和近似结构数据。结果表明,几个神经网络分类器能够以94.5%的平均准确率区分金属位点和非金属位点。该方法在LiveBench目标中被证明能够正确识别金属结合位点,而在这些目标中使用InterPro无法检测到明显的金属结合序列基序。对于使用mGenTHREADER生成的无侧链信息的低分辨率预测结构,准确检测金属位点被证明是可行的。对于最近解析的来自流感嗜血杆菌的假设蛋白质观察到高分预测,表明存在一个推定的金属结合位点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验