Baaden Marc, Sansom Mark S P
Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
Biophys J. 2004 Nov;87(5):2942-53. doi: 10.1529/biophysj.104.046987. Epub 2004 Aug 17.
Five molecular dynamics simulations (total duration >25 ns) have been performed on the Escherichia coli outer membrane protease OmpT embedded in a dimyristoylphosphatidylcholine lipid bilayer. Globally the protein is conformationally stable. Some degree of tilt of the beta-barrel is observed relative to the bilayer plane. The greatest degree of conformational flexibility is seen in the extracellular loops. A complex network of fluctuating H-bonds is formed between the active site residues, such that the Asp210-His212 interaction is maintained throughout, whereas His212 and Asp83 are often bridged by a water molecule. This supports a catalytic mechanism whereby Asp83 and His212 bind a water molecule that attacks the peptide carbonyl. A configuration yielded by docking calculations of OmpT simulation snapshots and a model substrate peptide Ala-Arg-Arg-Ala was used as the starting point for an extended Huckel calculation on the docked peptide. These placed the lowest unoccupied molecular orbital mainly on the carbon atom of the central C=O in the scissile peptide bond, thus favoring attack on the central peptide by the water held by residues Asp83 and His212. The trajectories of water molecules reveal exchange of waters between the intracellular face of the membrane and the interior of the barrel but no exchange at the extracellular mouth. This suggests that the pore-like region in the center of OmpT may enable access of water to the active site from below. The simulations appear to reveal the presence of specific lipid interaction sites on the surface of the OmpT barrel. This reveals the ability of extended MD simulations to provide meaningful information on protein-lipid interactions.
已对嵌入二肉豆蔻酰磷脂酰胆碱脂质双层中的大肠杆菌外膜蛋白酶OmpT进行了五次分子动力学模拟(总时长>25纳秒)。总体而言,该蛋白质在构象上是稳定的。观察到β桶相对于双层平面有一定程度的倾斜。在细胞外环中观察到最大程度的构象灵活性。在活性位点残基之间形成了一个波动的氢键复杂网络,使得Asp210-His212相互作用始终得以维持,而His212和Asp83常常由一个水分子桥连。这支持了一种催化机制,即Asp83和His212结合一个攻击肽羰基的水分子。将OmpT模拟快照与模型底物肽Ala-Arg-Arg-Ala对接计算得到的一种构型用作对对接肽进行扩展休克尔计算的起点。这些计算将最低未占分子轨道主要置于可裂解肽键中中心C=O的碳原子上,从而有利于由Asp83和His212残基所结合的水对中心肽进行攻击。水分子的轨迹揭示了膜内侧面与桶内部之间的水交换,但在细胞外口处没有交换。这表明OmpT中心的孔状区域可能使水能够从下方进入活性位点。模拟似乎揭示了OmpT桶表面存在特定的脂质相互作用位点。这揭示了扩展分子动力学模拟提供有关蛋白质-脂质相互作用有意义信息的能力。