Im Wonpil, Feig Michael, Brooks Charles L
Department of Molecular Biology and Center for Theoretical Biological Physics, The Scripps Research Institute, La Jolla, California 92037, USA.
Biophys J. 2003 Nov;85(5):2900-18. doi: 10.1016/S0006-3495(03)74712-2.
Exploiting recent developments in generalized Born (GB) electrostatics theory, we have reformulated the calculation of the self-electrostatic solvation energy to account for the influence of biological membranes. Consistent with continuum Poisson-Boltzmann (PB) electrostatics, the membrane is approximated as an solvent-inaccessible infinite planar low-dielectric slab. The present membrane GB model closely reproduces the PB electrostatic solvation energy profile across the membrane. The nonpolar contribution to the solvation energy is taken to be proportional to the solvent-exposed surface area (SA) with a phenomenological surface tension coefficient. The proposed membrane GB/SA model requires minor modifications of the pre-existing GB model and appears to be quite efficient. By combining this implicit model for the solvent/bilayer environment with advanced computational sampling methods, like replica-exchange molecular dynamics, we are able to fold and assemble helical membrane peptides. We examine the reliability of this model and approach by applications to three membrane peptides: melittin from bee venom, the transmembrane domain of the M2 protein from Influenza A (M2-TMP), and the transmembrane domain of glycophorin A (GpA). In the context of these proteins, we explore the role of biological membranes (represented as a low-dielectric medium) in affecting the conformational changes in melittin, the tilt of transmembrane peptides with respect to the membrane normal (M2-TMP), helix-to-helix interactions in membranes (GpA), and the prediction of the configuration of transmembrane helical bundles (GpA). The present method is found to perform well in each of these cases and is anticipated to be useful in the study of folding and assembly of membrane proteins as well as in structure refinement and modeling of membrane proteins where a limited number of experimental observables are available.
利用广义玻恩(GB)静电理论的最新进展,我们重新制定了自静电溶剂化能的计算方法,以考虑生物膜的影响。与连续介质泊松-玻尔兹曼(PB)静电学一致,膜被近似为溶剂不可及的无限平面低介电常数平板。目前的膜GB模型紧密再现了跨膜的PB静电溶剂化能分布。溶剂化能的非极性贡献被认为与具有唯象表面张力系数的溶剂暴露表面积(SA)成正比。所提出的膜GB/SA模型只需对现有的GB模型进行微小修改,且似乎相当有效。通过将这种针对溶剂/双层环境的隐式模型与先进的计算采样方法(如副本交换分子动力学)相结合,我们能够折叠和组装螺旋膜肽。我们通过将该模型应用于三种膜肽来检验其可靠性和方法的有效性:蜂毒中的蜂毒素、甲型流感病毒M2蛋白的跨膜结构域(M2-TMP)以及血型糖蛋白A(GpA)的跨膜结构域。在这些蛋白质的背景下,我们探讨生物膜(表示为低介电介质)在影响蜂毒素构象变化、跨膜肽相对于膜法线的倾斜(M2-TMP)、膜中螺旋间相互作用(GpA)以及跨膜螺旋束构型预测(GpA)方面的作用。发现本方法在上述每种情况下都表现良好,预计在膜蛋白折叠和组装研究以及膜蛋白结构优化和建模中有用,因为在这些研究中可获得的实验观测数据有限。