Freeze H H, Hindsgaul O, Ichikawa M
La Jolla Cancer Research Foundation, California 92037.
J Biol Chem. 1992 Mar 5;267(7):4431-9.
The N-linked oligosaccharides on three lysosomal enzymes in Dictyostelium discoideum were found to contain mannose 6-phosphomethyl residues. We have identified and partially characterized a novel S-adenosylmethionine-dependent methyltransferase that is probably responsible for the synthesis of this unusual diester from Man-6-P. The enzyme selectively methylates the phosphate group of Man-6-P (Km 4.3 mM). Glucose-6-P and fructose-1-P are relatively poor acceptors; however, the enzyme is inactive against a broad array of other phosphorylated compounds. Using model di-, tri-, and pentasaccharide acceptors that include portions of the three different branches of high mannose-type oligosaccharides, we found that the enzyme prefers terminal alpha 1----2-linked Man-6-P residues (Km 0.15-1.25 mM) found on the known phosphorylated branches. The enzyme is membrane bound, has a neutral pH optimum and cofractionates on sucrose gradients with GlcNAc-1-P transferase, which resembles its mammalian counterpart, and is, presumably, the first enzyme in the phosphorylation pathway. Based on the substrate specificity and colocalization with GlcNAc-1-P transferase, the phosphate methyltransferase is likely to be responsible for the generation of mannose-6-phosphomethyldiester on Dictyostelium oligosaccharides.