Suppr超能文献

用于分离多重修饰的中性和阴离子盘基网柄菌N-聚糖的亲水相互作用阴离子交换法

Hydrophilic interaction anion exchange for separation of multiply modified neutral and anionic Dictyostelium N-glycans.

作者信息

Hykollari Alba, Malzl Daniel, Yan Shi, Wilson Iain B H, Paschinger Katharina

机构信息

Department für Chemie, Universität für Bodenkultur, Wien, Austria.

出版信息

Electrophoresis. 2017 Sep;38(17):2175-2183. doi: 10.1002/elps.201700073. Epub 2017 Jun 21.

Abstract

The unusual nature of the N-glycans of the cellular slime mould Dictyostelium discoideum has been revealed by a number of studies, primarily based on examination of radiolabeled glycopeptides but more recently also by MS. The complexity of the N-glycomes of even glycosylation mutants is compounded by the occurrence of anionic modifications, which also present an analytical challenge. In this study, we have employed hydrophilic interaction anion exchange (HIAX) HPLC in combination with MALDI-TOF MS/MS to explore the anionic N-glycome of the M31 (modA) strain, which lacks endoplasmic reticulum α-glucosidase II, an enzyme conserved in most eukaryotes including Homo sapiens. Prefractionation with HIAX chromatography enabled the identification of N-glycans with unusual oligo-α1,2-mannose extensions as well as others with up to four anionic modifications. Due to the use of hydrofluoric acid treatment, we were able to discriminate isobaric glycans differing in the presence of sulphate or phosphate on intersected structures as opposed to those carrying GlcNAc-phosphodiesters. The latter represent biosynthetic intermediates during the pathway leading to formation of the methylphosphorylated mannose epitope, which may have a similar function in intracellular targeting of hydrolases as the mannose-6-phosphate modification of lysosomal enzymes in mammals. In conclusion, HIAX in combination with MS is a highly sensitive approach for both fine separation and definition of neutral and anionic N-glycan structures.

摘要

多项研究揭示了细胞黏菌盘基网柄菌 N-聚糖的独特性质,这些研究主要基于对放射性标记糖肽的检测,但最近也采用了质谱技术。即使是糖基化突变体的 N-糖组的复杂性,也因阴离子修饰的存在而加剧,这也带来了分析上的挑战。在本研究中,我们采用亲水相互作用阴离子交换(HIAX)高效液相色谱结合基质辅助激光解吸电离飞行时间串联质谱(MALDI-TOF MS/MS),来探索 M31(modA)菌株的阴离子 N-糖组,该菌株缺乏内质网α-葡萄糖苷酶 II,这是一种在包括人类在内的大多数真核生物中都保守的酶。通过 HIAX 色谱进行预分级分离,能够鉴定出具有不寻常的低聚-α1,2-甘露糖延伸的 N-聚糖,以及其他具有多达四种阴离子修饰的 N-聚糖。由于使用了氢氟酸处理,我们能够区分在交叉结构上存在硫酸盐或磷酸盐的等压聚糖,与携带 N-乙酰葡糖胺磷酸二酯的聚糖。后者代表了导致甲基磷酸化甘露糖表位形成的途径中的生物合成中间体,其在水解酶的细胞内靶向中可能具有与哺乳动物溶酶体酶的甘露糖-6-磷酸修饰类似的功能。总之,HIAX 与质谱联用是一种用于精细分离和定义中性和阴离子 N-聚糖结构的高灵敏度方法。

相似文献

1
Hydrophilic interaction anion exchange for separation of multiply modified neutral and anionic Dictyostelium N-glycans.
Electrophoresis. 2017 Sep;38(17):2175-2183. doi: 10.1002/elps.201700073. Epub 2017 Jun 21.
4
Analysis of Invertebrate and Protist N-Glycans.
Methods Mol Biol. 2017;1503:167-184. doi: 10.1007/978-1-4939-6493-2_13.
6
N-glycosylation of colorectal cancer tissues: a liquid chromatography and mass spectrometry-based investigation.
Mol Cell Proteomics. 2012 Sep;11(9):571-85. doi: 10.1074/mcp.M111.011601. Epub 2012 May 9.
7
Analysis of zwitterionic and anionic N-linked glycans from invertebrates and protists by mass spectrometry.
Glycoconj J. 2016 Jun;33(3):273-83. doi: 10.1007/s10719-016-9650-x. Epub 2016 Feb 22.
10

引用本文的文献

1
New insights into the N-glycomes of species.
BBA Adv. 2025 Jan 16;7:100142. doi: 10.1016/j.bbadva.2025.100142. eCollection 2025.
2
Analysis of Caenorhabditis Protein Glycosylation.
Methods Mol Biol. 2024;2762:123-138. doi: 10.1007/978-1-0716-3666-4_8.
3
Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes.
Biol Rev Camb Philos Soc. 2022 Apr;97(2):732-748. doi: 10.1111/brv.12820. Epub 2021 Dec 6.
4
Negative-mode mass spectrometry in the analysis of invertebrate, fungal, and protist N-glycans.
Mass Spectrom Rev. 2022 Nov;41(6):945-963. doi: 10.1002/mas.21693. Epub 2021 May 6.
5
Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective.
Mol Cell Proteomics. 2021;20:100024. doi: 10.1074/mcp.R120.002263. Epub 2021 Jan 6.
6
Anionic and zwitterionic moieties as widespread glycan modifications in non-vertebrates.
Glycoconj J. 2020 Feb;37(1):27-40. doi: 10.1007/s10719-019-09874-2. Epub 2019 Jul 5.
7
Protein-Specific Analysis of Invertebrate Glycoproteins.
Methods Mol Biol. 2019;1871:421-435. doi: 10.1007/978-1-4939-8814-3_24.

本文引用的文献

1
Analysis of Invertebrate and Protist N-Glycans.
Methods Mol Biol. 2017;1503:167-184. doi: 10.1007/978-1-4939-6493-2_13.
3
Analysis of zwitterionic and anionic N-linked glycans from invertebrates and protists by mass spectrometry.
Glycoconj J. 2016 Jun;33(3):273-83. doi: 10.1007/s10719-016-9650-x. Epub 2016 Feb 22.
4
Comparisons of Caenorhabditis Fucosyltransferase Mutants Reveal a Multiplicity of Isomeric N-Glycan Structures.
J Proteome Res. 2015 Dec 4;14(12):5291-305. doi: 10.1021/acs.jproteome.5b00746. Epub 2015 Nov 24.
5
More Than Just Oligomannose: An N-glycomic Comparison of Penicillium Species.
Mol Cell Proteomics. 2016 Jan;15(1):73-92. doi: 10.1074/mcp.M115.055061. Epub 2015 Oct 29.
6
Targeted release and fractionation reveal glucuronylated and sulphated N- and O-glycans in larvae of dipteran insects.
J Proteomics. 2015 Aug 3;126:172-88. doi: 10.1016/j.jprot.2015.05.030. Epub 2015 Jun 3.
7
Evolutionary diversity of social amoebae N-glycomes may support interspecific autonomy.
Glycoconj J. 2015 Aug;32(6):345-59. doi: 10.1007/s10719-015-9592-8. Epub 2015 May 19.
8
Comparison of RP-HPLC modes to analyse the N-glycome of the free-living nematode Pristionchus pacificus.
Electrophoresis. 2015 Jun;36(11-12):1314-29. doi: 10.1002/elps.201400528.
10
N-glycomic and N-glycoproteomic studies in the social amoebae.
Methods Mol Biol. 2013;983:205-29. doi: 10.1007/978-1-62703-302-2_11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验