Sterba Sonya K
Quantitative Methods Program, Department of Psychology and Human Development, Vanderbilt University, Peabody #552, 230 Appleton Place, Nashville, TN, 37203 , USA.
Psychometrika. 2016 Jun;81(2):506-34. doi: 10.1007/s11336-015-9442-4.
Psychologists often use latent transition analysis (LTA) to investigate state-to-state change in discrete latent constructs involving delinquent or risky behaviors. In this setting, latent-state-dependent nonignorable missingness is a potential concern. For some longitudinal models (e.g., growth models), a large literature has addressed extensions to accommodate nonignorable missingness. In contrast, little research has addressed how to extend the LTA to accommodate nonignorable missingness. Here we present a shared parameter LTA that can reduce bias due to latent-state-dependent nonignorable missingness: a parallel-process missing-not-at-random (MNAR-PP) LTA. The MNAR-PP LTA allows outcome process parameters to be interpreted as in the conventional LTA, which facilitates sensitivity analyses assessing changes in estimates between LTA and MNAR-PP LTA. In a sensitivity analysis for our empirical example, previous and current membership in high-delinquency states predicted adolescents' membership in missingness states that had high nonresponse probabilities for some or all items. A conventional LTA overestimated the proportion of adolescents ending up in a low-delinquency state, compared to an MNAR-PP LTA.
心理学家经常使用潜在转变分析(LTA)来研究涉及犯罪或危险行为的离散潜在结构中的状态到状态的变化。在这种情况下,潜在状态依赖的不可忽视的缺失是一个潜在的问题。对于一些纵向模型(例如,增长模型),大量文献已经探讨了如何扩展模型以适应不可忽视的缺失。相比之下,很少有研究探讨如何扩展LTA以适应不可忽视的缺失。在这里,我们提出了一种共享参数LTA,它可以减少由于潜在状态依赖的不可忽视的缺失而导致的偏差:一种并行过程非随机缺失(MNAR-PP)LTA。MNAR-PP LTA允许将结果过程参数解释为与传统LTA相同,这有助于进行敏感性分析,评估LTA和MNAR-PP LTA之间估计值的变化。在我们实证例子的敏感性分析中,高犯罪状态的既往和当前成员身份预测了青少年在某些或所有项目无应答概率较高的缺失状态中的成员身份。与MNAR-PP LTA相比,传统LTA高估了最终处于低犯罪状态的青少年比例。