Adeli Hojjat, Ghosh-Dastidar Samanwoy, Dadmehr Nahid
Department of Biomedical Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus 43210, USA.
IEEE Trans Biomed Eng. 2007 Feb;54(2):205-11. doi: 10.1109/TBME.2006.886855.
A wavelet-chaos methodology is presented for analysis of EEGs and delta, theta, alpha, beta, and gamma subbands of EEGs for detection of seizure and epilepsy. The nonlinear dynamics of the original EEGs are quantified in the form of the correlation dimension (CD, representing system complexity) and the largest Lyapunov exponent (LLE, representing system chaoticity). The new wavelet-based methodology isolates the changes in CD and LLE in specific subbands of the EEG. The methodology is applied to three different groups of EEG signals: 1) healthy subjects; 2) epileptic subjects during a seizure-free interval (interictal EEG); 3) epileptic subjects during a seizure (ictal EEG). The effectiveness of CD and LLE in differentiating between the three groups is investigated based on statistical significance of the differences. It is observed that while there may not be significant differences in the values of the parameters obtained from the original EEG, differences may be identified when the parameters are employed in conjunction with specific EEG subbands. Moreover, it is concluded that for the higher frequency beta and gamma subbands, the CD differentiates between the three groups, whereas for the lower frequency alpha subband, the LLE differentiates between the three groups.
提出了一种小波-混沌方法,用于分析脑电图(EEG)及其δ、θ、α、β和γ子带,以检测癫痫发作和癫痫。原始脑电图的非线性动力学以关联维数(CD,代表系统复杂性)和最大Lyapunov指数(LLE,代表系统混沌性)的形式进行量化。基于小波的新方法分离了脑电图特定子带中CD和LLE的变化。该方法应用于三组不同的脑电信号:1)健康受试者;2)癫痫患者在无发作间期(发作间期脑电图);3)癫痫患者在发作期间(发作期脑电图)。基于差异的统计学显著性,研究了CD和LLE在区分这三组中的有效性。观察到,虽然从原始脑电图获得的参数值可能没有显著差异,但当这些参数与特定的脑电图子带结合使用时,可能会发现差异。此外,得出的结论是,对于较高频率的β和γ子带,CD可以区分这三组,而对于较低频率的α子带,LLE可以区分这三组。