Suppr超能文献

基于支持向量机的癫痫脑电信号识别方法研究

[The recognition methodology study of epileptic EEGs based on support vector machine].

作者信息

Huang Ruimel, Du Shouhong, Chen Ziyi

机构信息

Department of Biomedical Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.

College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2013 Oct;30(5):919-24.

Abstract

EEG recordings contain valuable physiological and pathological information in the process of seizure. The dynamic changes of brain electrical activity provide foundation and possibility for research and development of automatic detection system about epilepsy. In this paper, a nonlinear dynamic method is presented for analysis of the nonlinear dynamic characteristics of EEGs and delta, theta, alpha, and beta sub-bands of EEGs based on wavelet transform. The extracted feature is used as the input vector of a support vector machine (SVM) to construct classifiers. The results showed that the classification accuracy of SVM classifier based on nonlinear dynamic characteristics to classify the EEG into interictal EEGs and ictal EEGs reached 90% or higher. The support vector machine has good generalization in detecting the epilepsy EEG signals as a nonlinear classifier.

摘要

脑电图记录在癫痫发作过程中包含有价值的生理和病理信息。脑电活动的动态变化为癫痫自动检测系统的研发提供了基础和可能性。本文提出了一种基于小波变换的非线性动力学方法,用于分析脑电图及其δ、θ、α和β子带的非线性动力学特征。提取的特征用作支持向量机(SVM)的输入向量以构建分类器。结果表明,基于非线性动力学特征的支持向量机分类器将脑电图分为发作间期脑电图和发作期脑电图的分类准确率达到90%或更高。支持向量机作为一种非线性分类器在检测癫痫脑电信号方面具有良好的泛化能力。

相似文献

1
[The recognition methodology study of epileptic EEGs based on support vector machine].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2013 Oct;30(5):919-24.
2
Epileptic EEG classification based on extreme learning machine and nonlinear features.
Epilepsy Res. 2011 Sep;96(1-2):29-38. doi: 10.1016/j.eplepsyres.2011.04.013. Epub 2011 May 25.
3
[EEG signal classification based on EMD and SVM].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2011 Oct;28(5):891-4.
4
Feature extraction and recognition of ictal EEG using EMD and SVM.
Comput Biol Med. 2013 Aug 1;43(7):807-16. doi: 10.1016/j.compbiomed.2013.04.002. Epub 2013 Apr 6.
5
Comparison of ictal and interictal EEG signals using fractal features.
Int J Neural Syst. 2013 Dec;23(6):1350028. doi: 10.1142/S0129065713500287. Epub 2013 Sep 18.
6
Automatic epileptic seizure detection in EEGs using MF-DFA, SVM based on cloud computing.
J Xray Sci Technol. 2017;25(2):261-272. doi: 10.3233/XST-17258.
7
Classification of EEG signals using neural network and logistic regression.
Comput Methods Programs Biomed. 2005 May;78(2):87-99. doi: 10.1016/j.cmpb.2004.10.009.
8
Epileptic seizure detection in EEG signal with GModPCA and support vector machine.
Biomed Mater Eng. 2017;28(2):141-157. doi: 10.3233/BME-171663.
9
A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy.
IEEE Trans Biomed Eng. 2007 Feb;54(2):205-11. doi: 10.1109/TBME.2006.886855.
10
Epileptic seizure detection in EEGs signals based on the weighted visibility graph entropy.
Seizure. 2017 Aug;50:202-208. doi: 10.1016/j.seizure.2017.07.001. Epub 2017 Jul 11.

引用本文的文献

1
EEG Signal and Feature Interaction Modeling-Based Eye Behavior Prediction Research.
Comput Math Methods Med. 2020 May 16;2020:2801015. doi: 10.1155/2020/2801015. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验