Suppr超能文献

发酵支原体与HeLa细胞结合并侵入:纤溶酶原和尿激酶的作用。

Mycoplasma fermentans binds to and invades HeLa cells: involvement of plasminogen and urokinase.

作者信息

Yavlovich Amichai, Katzenell Avigail, Tarshis Mark, Higazi Abd A-R, Rottem Shlomo

机构信息

Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.

出版信息

Infect Immun. 2004 Sep;72(9):5004-11. doi: 10.1128/IAI.72.9.5004-5011.2004.

Abstract

Adherence of Mycoplasma fermentans to HeLa cells followed saturation kinetics, required a divalent cation, and was enhanced by preincubation of the organism at 37 degrees C for 1 h in a low-osmolarity solution. Proteolytic digestion, choline phosphate, or anti-choline phosphate antibodies partially inhibited the adherence, supporting the notion that M. fermentans utilizes at least two surface components for adhesion, a protease-sensitive surface protein and a phosphocholine-containing glycolipid. Plasminogen binding to M. fermentans greatly increased the maximal adherence of the organism to HeLa cells. Anti-plasminogen antibodies and free plasminogen inhibited this increase. These observations suggest that in the presence of plasminogen the organism adheres to novel sites on the HeLa cell surface, which are apparently plasminogen receptors. Plasminogen-bound M. fermentans was detected exclusively on the cell surface of the infected HeLa cells. Nevertheless, plasminogen binding in the presence of the urokinase-type plasminogen activator (uPA) promoted the invasion of HeLa cells by M. fermentans. The latter finding indicates that the invasiveness of M. fermentans does not result from binding plasminogen but from activation of the bound plasminogen to plasmin. Cholesterol depletion and sequestration with beta-cyclodextrin and filipin, respectively, did not affect the capacity of M. fermentans to adhere, but invasion of HeLa cells by uPA-activated plasminogen-bound M. fermentans was impaired, suggesting that lipid rafts are implicated in M. fermentans entry.

摘要

发酵支原体对HeLa细胞的黏附遵循饱和动力学,需要二价阳离子,并且在低渗溶液中于37℃将该微生物预孵育1小时可增强黏附。蛋白水解消化、磷酸胆碱或抗磷酸胆碱抗体可部分抑制黏附,这支持了发酵支原体利用至少两种表面成分进行黏附的观点,一种是蛋白酶敏感的表面蛋白,另一种是含磷酸胆碱的糖脂。纤溶酶原与发酵支原体的结合极大地增加了该微生物对HeLa细胞的最大黏附。抗纤溶酶原抗体和游离纤溶酶原可抑制这种增加。这些观察结果表明,在纤溶酶原存在的情况下,该微生物黏附于HeLa细胞表面的新位点,这些位点显然是纤溶酶原受体。仅在被感染的HeLa细胞的细胞表面检测到结合纤溶酶原的发酵支原体。然而,在尿激酶型纤溶酶原激活剂(uPA)存在下的纤溶酶原结合促进了发酵支原体对HeLa细胞的侵袭。后一发现表明,发酵支原体的侵袭性不是由纤溶酶原的结合引起的,而是由结合的纤溶酶原激活为纤溶酶所致。分别用β-环糊精和菲律宾菌素进行胆固醇耗竭和螯合,并不影响发酵支原体的黏附能力,但uPA激活的结合纤溶酶原的发酵支原体对HeLa细胞的侵袭受到损害,这表明脂筏与发酵支原体的进入有关。

相似文献

1
Mycoplasma fermentans binds to and invades HeLa cells: involvement of plasminogen and urokinase.
Infect Immun. 2004 Sep;72(9):5004-11. doi: 10.1128/IAI.72.9.5004-5011.2004.
2
Plasminogen binding and activation by Mycoplasma fermentans.
Infect Immun. 2001 Apr;69(4):1977-82. doi: 10.1128/IAI.69.4.1977-1982.2001.
4
Alpha-enolase resides on the cell surface of Mycoplasma fermentans and binds plasminogen.
Infect Immun. 2007 Dec;75(12):5716-9. doi: 10.1128/IAI.01049-07. Epub 2007 Oct 15.
5
The reducing antioxidant capacity of Mycoplasma fermentans.
FEMS Microbiol Lett. 2006 Jun;259(2):195-200. doi: 10.1111/j.1574-6968.2006.00271.x.
6
Identification and functional mapping of the Mycoplasma fermentans P29 adhesin.
Infect Immun. 2002 Sep;70(9):4925-35. doi: 10.1128/IAI.70.9.4925-4935.2002.
9
Mycoplasma cells stimulate in vitro activation of plasminogen by purified tissue-type plasminogen activator.
FEMS Microbiol Lett. 1993 Jan 15;106(2):201-4. doi: 10.1111/j.1574-6968.1993.tb05959.x.

引用本文的文献

1
Unveiling the stealthy tactics: mycoplasma's immune evasion strategies.
Front Cell Infect Microbiol. 2023 Aug 31;13:1247182. doi: 10.3389/fcimb.2023.1247182. eCollection 2023.
5
Characterization of the interactome profiling of DnaK in cancer cells reveals interference with key cellular pathways.
Front Microbiol. 2022 Oct 28;13:1022704. doi: 10.3389/fmicb.2022.1022704. eCollection 2022.
6
adhesins and their target proteins.
Front Immunol. 2022 Oct 20;13:1016641. doi: 10.3389/fimmu.2022.1016641. eCollection 2022.
7
downregulates RECK to promote matrix metalloproteinase-9 secretion by bronchial epithelial cells.
Virulence. 2022 Dec;13(1):1270-1284. doi: 10.1080/21505594.2022.2101746.
8
The spp. 'Releasome': A New Concept for a Long-Known Phenomenon.
Front Microbiol. 2022 Apr 15;13:853440. doi: 10.3389/fmicb.2022.853440. eCollection 2022.
9
Host cell interactions of novel antigenic membrane proteins of Mycoplasma agalactiae.
BMC Microbiol. 2022 Apr 8;22(1):93. doi: 10.1186/s12866-022-02512-2.
10
The Relationship between and Cancer: Is It Fact or Fiction ? Narrative Review and Update on the Situation.
J Oncol. 2021 Jul 31;2021:9986550. doi: 10.1155/2021/9986550. eCollection 2021.

本文引用的文献

1
Internalization and intracellular survival of Mycoplasma pneumoniae by non-phagocytic cells.
FEMS Microbiol Lett. 2004 Apr 15;233(2):241-6. doi: 10.1016/j.femsle.2004.02.016.
3
A rapid method of total lipid extraction and purification.
Can J Biochem Physiol. 1959 Aug;37(8):911-7. doi: 10.1139/o59-099.
4
Cell surface antigens of Mycoplasma species bovine group 7 bind to and activate plasminogen.
Infect Immun. 2003 Aug;71(8):4823-7. doi: 10.1128/IAI.71.8.4823-4827.2003.
5
Molecular mechanisms of glioma invasiveness: the role of proteases.
Nat Rev Cancer. 2003 Jul;3(7):489-501. doi: 10.1038/nrc1121.
6
Interaction of mycoplasmas with host cells.
Physiol Rev. 2003 Apr;83(2):417-32. doi: 10.1152/physrev.00030.2002.
7
Membrane rafts play a crucial role in receptor activator of nuclear factor kappaB signaling and osteoclast function.
J Biol Chem. 2003 May 16;278(20):18573-80. doi: 10.1074/jbc.M212626200. Epub 2003 Mar 11.
9
Identification and functional mapping of the Mycoplasma fermentans P29 adhesin.
Infect Immun. 2002 Sep;70(9):4925-35. doi: 10.1128/IAI.70.9.4925-4935.2002.
10
Lipid rafts and signal transduction.
Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. doi: 10.1038/35036052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验