Duscher Gerd, Chisholm Matthew F, Alber Uwe, Rühle Manfred
Oak Ridge National Laboratory, Condensed Matter Sciences Division, Oak Ridge, Tennessee 37831-6030, USA.
Nat Mater. 2004 Sep;3(9):621-6. doi: 10.1038/nmat1191. Epub 2004 Aug 22.
Catastrophic brittle fracture of crystalline materials is one of the best documented but most poorly understood fundamental phenomena in materials science. Embrittlement of copper by bismuth is a classic example of this phenomenon. Because brittle fracture in any structural material can involve human tragedy, a better understanding of the mechanisms behind it is of the highest interest. In this study, we use a combination of two state-of-the-art atomic characterization techniques and ab initio theoretical materials simulations to investigate the geometric and electronic structure of a copper grain boundary with and without bismuth. Only with this unique combination of methods are we able to observe the actual distribution of bismuth in the boundary and detect changes in the electronic structure caused by the bismuth impurity. We find that the copper atoms that surround the segregated bismuth in the grain boundary become embrittled by taking on a more zinc-like electronic structure.
晶体材料的灾难性脆性断裂是材料科学中记录最完备但理解最不足的基本现象之一。铋使铜脆化就是这一现象的经典例子。由于任何结构材料中的脆性断裂都可能涉及人类悲剧,因此深入了解其背后的机制具有极高的重要性。在本研究中,我们结合了两种最先进的原子表征技术和从头算理论材料模拟,来研究含铋和不含铋的铜晶界的几何结构和电子结构。只有通过这种独特的方法组合,我们才能观察到铋在晶界中的实际分布,并检测到由铋杂质引起的电子结构变化。我们发现,在晶界中围绕偏析铋的铜原子通过呈现更类似锌的电子结构而变脆。