Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
Nat Mater. 2004 Jan;3(1):43-7. doi: 10.1038/nmat1035. Epub 2003 Dec 14.
Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.
分子动力学模拟最近被用于阐明纳米晶面心立方金属中随着晶粒尺寸减小,从基于位错的变形机制到基于晶界的变形机制的转变。变形机制的这种转变导致在一个取决于堆垛层错能、金属弹性性能和外加应力大小的晶粒尺寸(“最强尺寸”)处出现最大屈服强度。在此,通过探究堆垛层错能在这种转变中的作用,我们阐明从晶界形核的扩展位错的尺寸如何影响力学行为。基于这些模拟所揭示的变形基本物理原理,我们提出了一个二维应力 - 晶粒尺寸变形机制图,用于描述纳米晶面心立方金属在低温下的力学行为。该图描绘了随着晶粒尺寸减小,变形机制和相关力学行为的这种转变,以及它对堆垛层错能、材料弹性性能和外加应力水平的依赖性。