Angom D, Ghosh S, Kota V K B
Physical Research Laboratory, Ahmedabad 380 009, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004;70(1 Pt 2):016209. doi: 10.1103/PhysRevE.70.016209. Epub 2004 Jul 23.
We revisit statistical wave function properties of finite systems of interacting fermions in the light of strength functions and their participation ratio and information entropy. For weakly interacting fermions in a mean-field with random two-body interactions of increasing strength lambda, the strength functions F(k) (E) are well known to change, in the regime where level fluctuations follow Wigner's surmise, from Breit-Wigner to Gaussian form. We propose an ansatz for the function describing this transition which we use to investigate the participation ratio xi(2) and the information entropy S(info) during this crossover, thereby extending the known behavior valid in the Gaussian domain into much of the Breit-Wigner domain. Our method also allows us to derive the scaling law lambda(d) approximately 1/sqrt[m] ( m is number of fermions) for the duality point lambda= lambda(d), where F(k) (E), xi(2), and S(info) in both the weak ( lambda=0 ) and strong mixing ( lambda= infinity ) basis coincide. As an application, the ansatz function for strength functions is used in describing the Breit-Wigner to Gaussian transition seen in neutral atoms CeI to SmI with valence electrons changing from 4 to 8.
我们根据强度函数及其参与比和信息熵,重新审视相互作用费米子有限系统的统计波函数性质。对于处于具有强度不断增加的随机两体相互作用的平均场中的弱相互作用费米子,在能级涨落遵循维格纳推测的区域中,强度函数F(k)(E) 众所周知会从 Breit-Wigner 形式转变为高斯形式。我们提出了一个用于描述这种转变的函数假设,并用它来研究在此交叉过程中的参与比ξ(2)和信息熵S(info),从而将在高斯区域有效的已知行为扩展到大部分 Breit-Wigner 区域。我们的方法还使我们能够推导出对偶点λ = λ(d) 的标度律λ(d) ≈ 1/√[m](m 是费米子数),在该点,弱(λ = 0)和强混合(λ = ∞)基下的 F(k)(E)、ξ(2)和 S(info) 是一致的。作为一个应用,强度函数的假设函数被用于描述中性原子CeI到SmI中随着价电子从4变为8所观察到的从 Breit-Wigner 到高斯的转变。