Teklehaimanot Hailay Desta, Schwatrz Joel, Teklehaimanot Awash, Lipsitch Marc
Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
Emerg Infect Dis. 2004 Jul;10(7):1220-6. doi: 10.3201/eid1007.030722.
We describe a method for comparing the ability of different alert threshold algorithms to detect malaria epidemics and use it with a dataset consisting of weekly malaria cases collected from health facilities in 10 districts of Ethiopia from 1990 to 2000. Four types of alert threshold algorithms are compared: weekly percentile, weekly mean with standard deviation (simple, moving average, and log-transformed case numbers), slide positivity proportion, and slope of weekly cases on log scale. To compare dissimilar alert types on a single scale, a curve was plotted for each type of alert, which showed potentially prevented cases versus number of alerts triggered over 10 years. Simple weekly percentile cutoffs appear to be as good as more complex algorithms for detecting malaria epidemics in Ethiopia. The comparative method developed here may be useful for testing other proposed alert thresholds and for application in other populations.
我们描述了一种比较不同警报阈值算法检测疟疾流行能力的方法,并将其应用于一个数据集,该数据集包含1990年至2000年从埃塞俄比亚10个地区的卫生设施收集的每周疟疾病例。比较了四种类型的警报阈值算法:每周百分位数、带标准差的每周均值(简单、移动平均和对数转换后的病例数)、滑动阳性比例以及对数尺度上每周病例的斜率。为了在单一尺度上比较不同类型的警报,为每种警报类型绘制了一条曲线,该曲线显示了10年内潜在预防的病例数与触发的警报数。简单的每周百分位数临界值在检测埃塞俄比亚疟疾流行方面似乎与更复杂的算法一样有效。这里开发的比较方法可能有助于测试其他提议的警报阈值并应用于其他人群。