Snider Joseph, Lin Francis, Zahedi Neda, Rodionov Vladimir, Yu Clare C, Gross Steven P
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA.
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13204-9. doi: 10.1073/pnas.0403092101. Epub 2004 Aug 26.
Intracellular molecular motor-driven transport is essential for such diverse processes as mitosis, neuronal function, and mitochondrial transport. Whereas there have been in vitro studies of how motors function at the single-molecule level, and in vivo studies of the structure of filamentary networks, studies of how the motors effectively use the networks for transportation have been lacking. We investigate how the combined system of myosin-V motors plus actin filaments is used to transport pigment granules in Xenopus melanophores. Experimentally, we characterize both the actin filament network, and how this transport is altered in response to external signals. We then develop a theoretical formalism to explain these changes. We show that cells regulate transport by controlling how often granules switch from one filament to another, rather than by altering individual motor activity at the single-molecule level, or by relying on structural changes in the network.
细胞内分子马达驱动的运输对于有丝分裂、神经元功能和线粒体运输等多种不同过程至关重要。虽然已有关于马达在单分子水平如何发挥功能的体外研究,以及丝状网络结构的体内研究,但关于马达如何有效利用网络进行运输的研究却一直缺乏。我们研究肌球蛋白-V马达与肌动蛋白丝的组合系统如何用于在非洲爪蟾黑素细胞中运输色素颗粒。在实验中,我们对肌动蛋白丝网络以及这种运输如何响应外部信号而改变进行了表征。然后我们开发了一种理论形式来解释这些变化。我们表明,细胞通过控制颗粒从一根丝切换到另一根丝的频率来调节运输,而不是通过在单分子水平改变单个马达的活性,也不是依靠网络中的结构变化。