Suppr超能文献

基于肌动蛋白的细胞内运输:你能走多远取决于你切换的频率。

Intracellular actin-based transport: how far you go depends on how often you switch.

作者信息

Snider Joseph, Lin Francis, Zahedi Neda, Rodionov Vladimir, Yu Clare C, Gross Steven P

机构信息

Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA.

出版信息

Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13204-9. doi: 10.1073/pnas.0403092101. Epub 2004 Aug 26.

Abstract

Intracellular molecular motor-driven transport is essential for such diverse processes as mitosis, neuronal function, and mitochondrial transport. Whereas there have been in vitro studies of how motors function at the single-molecule level, and in vivo studies of the structure of filamentary networks, studies of how the motors effectively use the networks for transportation have been lacking. We investigate how the combined system of myosin-V motors plus actin filaments is used to transport pigment granules in Xenopus melanophores. Experimentally, we characterize both the actin filament network, and how this transport is altered in response to external signals. We then develop a theoretical formalism to explain these changes. We show that cells regulate transport by controlling how often granules switch from one filament to another, rather than by altering individual motor activity at the single-molecule level, or by relying on structural changes in the network.

摘要

细胞内分子马达驱动的运输对于有丝分裂、神经元功能和线粒体运输等多种不同过程至关重要。虽然已有关于马达在单分子水平如何发挥功能的体外研究,以及丝状网络结构的体内研究,但关于马达如何有效利用网络进行运输的研究却一直缺乏。我们研究肌球蛋白-V马达与肌动蛋白丝的组合系统如何用于在非洲爪蟾黑素细胞中运输色素颗粒。在实验中,我们对肌动蛋白丝网络以及这种运输如何响应外部信号而改变进行了表征。然后我们开发了一种理论形式来解释这些变化。我们表明,细胞通过控制颗粒从一根丝切换到另一根丝的频率来调节运输,而不是通过在单分子水平改变单个马达的活性,也不是依靠网络中的结构变化。

相似文献

1
Intracellular actin-based transport: how far you go depends on how often you switch.
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13204-9. doi: 10.1073/pnas.0403092101. Epub 2004 Aug 26.
2
Myosin cooperates with microtubule motors during organelle transport in melanophores.
Curr Biol. 1998 Jan 29;8(3):161-4. doi: 10.1016/s0960-9822(98)70063-6.
3
Models of motor-assisted transport of intracellular particles.
Biophys J. 2001 Jan;80(1):45-68. doi: 10.1016/S0006-3495(01)75994-2.
4
Myosin Va transport of liposomes in three-dimensional actin networks is modulated by actin filament density, position, and polarity.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8326-8335. doi: 10.1073/pnas.1901176116. Epub 2019 Apr 9.
5
Functional coordination of microtubule-based and actin-based motility in melanophores.
Curr Biol. 1998 Jan 29;8(3):165-8. doi: 10.1016/s0960-9822(98)70064-8.
6
Cargo recognition and cargo-mediated regulation of unconventional myosins.
Acc Chem Res. 2014 Oct 21;47(10):3061-70. doi: 10.1021/ar500216z. Epub 2014 Sep 17.
7
Intracellular transport based on actin polymerization.
Biochemistry (Mosc). 2014 Sep;79(9):917-27. doi: 10.1134/S0006297914090089.
9
Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors.
Biophys J. 2006 Jan 1;90(1):318-27. doi: 10.1529/biophysj.105.067843. Epub 2005 Oct 7.
10
Molecular motors: a tale of two filaments.
Curr Biol. 2007 Apr 17;17(8):R277-80. doi: 10.1016/j.cub.2007.02.034.

引用本文的文献

2
Molecular underpinnings of cytoskeletal cross-talk.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):3944-3952. doi: 10.1073/pnas.1917964117. Epub 2020 Feb 10.
3
Viscoelasticity Measurements Reveal Rheological Differences Between Stem-like and Non-stem-like Breast Cancer Cells.
Cell Mol Bioeng. 2017 Apr 3;10(3):235-248. doi: 10.1007/s12195-017-0485-8. eCollection 2017 Jun.
4
Heterogeneities Shape Passive Intracellular Transport.
Biophys J. 2019 Jul 23;117(2):203-213. doi: 10.1016/j.bpj.2019.06.009. Epub 2019 Jun 18.
5
Myosin Va transport of liposomes in three-dimensional actin networks is modulated by actin filament density, position, and polarity.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8326-8335. doi: 10.1073/pnas.1901176116. Epub 2019 Apr 9.
6
Cargo Transport by Two Coupled Myosin Va Motors on Actin Filaments and Bundles.
Biophys J. 2016 Nov 15;111(10):2228-2240. doi: 10.1016/j.bpj.2016.09.046.
7
Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.
Biophys J. 2015 Oct 20;109(8):1574-82. doi: 10.1016/j.bpj.2015.08.034.
8
A physical perspective on cytoplasmic streaming.
Interface Focus. 2015 Aug 6;5(4):20150030. doi: 10.1098/rsfs.2015.0030.
9
Calibration of optical tweezers for in vivo force measurements: how do different approaches compare?
Biophys J. 2014 Sep 16;107(6):1474-84. doi: 10.1016/j.bpj.2014.07.033.
10
Dynamic actin gene family evolution in primates.
Biomed Res Int. 2013;2013:630803. doi: 10.1155/2013/630803. Epub 2013 Jun 6.

本文引用的文献

1
Anomalous diffusion probes microstructure dynamics of entangled F-actin networks.
Phys Rev Lett. 2004 Apr 30;92(17):178101. doi: 10.1103/PhysRevLett.92.178101. Epub 2004 Apr 29.
3
Visualizing infection of individual influenza viruses.
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9280-5. doi: 10.1073/pnas.0832269100. Epub 2003 Jul 25.
4
Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization.
Science. 2003 Jun 27;300(5628):2061-5. doi: 10.1126/science.1084398. Epub 2003 Jun 5.
5
Interactions and regulation of molecular motors in Xenopus melanophores.
J Cell Biol. 2002 Mar 4;156(5):855-65. doi: 10.1083/jcb.200105055. Epub 2002 Feb 25.
6
Coordination of opposite-polarity microtubule motors.
J Cell Biol. 2002 Feb 18;156(4):715-24. doi: 10.1083/jcb.200109047. Epub 2002 Feb 28.
7
The motor domain determines the large step of myosin-V.
Nature. 2002 Jan 10;415(6868):192-5. doi: 10.1038/415192a.
8
Particle diffusion in a quasi-two-dimensional bacterial bath.
Phys Rev Lett. 2000 Mar 27;84(13):3017-20. doi: 10.1103/PhysRevLett.84.3017.
9
Myosin-V is a processive actin-based motor.
Nature. 1999 Aug 5;400(6744):590-3. doi: 10.1038/23072.
10
Single kinesin molecules studied with a molecular force clamp.
Nature. 1999 Jul 8;400(6740):184-9. doi: 10.1038/22146.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验