Suppr超能文献

用于体内力测量的光镊校准:不同方法的比较情况如何?

Calibration of optical tweezers for in vivo force measurements: how do different approaches compare?

作者信息

Jun Yonggun, Tripathy Suvranta K, Narayanareddy Babu R J, Mattson-Hoss Michelle K, Gross Steven P

机构信息

Department of Developmental and Cell Biology, University of California-Irvine, Irvine, California.

Department of Developmental and Cell Biology, University of California-Irvine, Irvine, California.

出版信息

Biophys J. 2014 Sep 16;107(6):1474-84. doi: 10.1016/j.bpj.2014.07.033.

Abstract

There is significant interest in quantifying force production inside cells, but since conditions in vivo are less well controlled than those in vitro, in vivo measurements are challenging. In particular, the in vivo environment may vary locally as far as its optical properties, and the organelles manipulated by the optical trap frequently vary in size and shape. Several methods have been proposed to overcome these difficulties. We evaluate the relative merits of these methods and directly compare two of them, a refractive index matching method, and a light-momentum-change method. Since in vivo forces are frequently relatively high (e.g., can exceed 15 pN for lipid droplets), a high-power laser is employed. We discover that this high-powered trap induces local temperature changes, and we develop an approach to compensate for uncertainties in the magnitude of applied force due to such temperature variations.

摘要

人们对量化细胞内的力产生有着浓厚兴趣,但由于体内条件不如体外条件易于控制,体内测量具有挑战性。特别是,体内环境在光学特性方面可能存在局部差异,并且被光镊操纵的细胞器在大小和形状上经常变化。已经提出了几种方法来克服这些困难。我们评估了这些方法的相对优点,并直接比较了其中两种方法,一种是折射率匹配方法,另一种是光动量变化方法。由于体内力通常相对较高(例如,脂质滴的力可超过15皮牛),因此使用了高功率激光。我们发现这种高功率光镊会引起局部温度变化,并且我们开发了一种方法来补偿由于这种温度变化导致的施加力大小的不确定性。

相似文献

1
Calibration of optical tweezers for in vivo force measurements: how do different approaches compare?
Biophys J. 2014 Sep 16;107(6):1474-84. doi: 10.1016/j.bpj.2014.07.033.
2
Beyond the Hookean Spring Model: Direct Measurement of Optical Forces Through Light Momentum Changes.
Methods Mol Biol. 2017;1486:41-76. doi: 10.1007/978-1-4939-6421-5_3.
3
Quantifying Force and Viscoelasticity Inside Living Cells Using an Active-Passive Calibrated Optical Trap.
Methods Mol Biol. 2017;1486:513-536. doi: 10.1007/978-1-4939-6421-5_20.
4
Multiplexed fluctuation-dissipation-theorem calibration of optical tweezers inside living cells.
Rev Sci Instrum. 2017 Nov;88(11):113112. doi: 10.1063/1.5012782.
5
Hemodynamic forces can be accurately measured in vivo with optical tweezers.
Mol Biol Cell. 2017 Nov 7;28(23):3252-3260. doi: 10.1091/mbc.E17-06-0382. Epub 2017 Sep 13.
6
Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells.
Methods Mol Biol. 2017;1486:537-552. doi: 10.1007/978-1-4939-6421-5_21.
7
Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors.
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18447-52. doi: 10.1073/pnas.1215462109. Epub 2012 Oct 22.
10
In vivo optical trapping indicates kinesin's stall force is reduced by dynein during intracellular transport.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3381-6. doi: 10.1073/pnas.1219961110. Epub 2013 Feb 12.

引用本文的文献

1
FAIR data for optical tweezers experiments.
Biophys J. 2025 Apr 15;124(8):1255-1272. doi: 10.1016/j.bpj.2025.03.005. Epub 2025 Mar 12.
2
Multiple kinesins speed up cargo transport in crowded environments by sharing load.
Commun Biol. 2025 Feb 13;8(1):232. doi: 10.1038/s42003-025-07573-3.
3
Measuring age-dependent viscoelasticity of organelles, cells and organisms with time-shared optical tweezer microrheology.
Nat Nanotechnol. 2025 Mar;20(3):411-420. doi: 10.1038/s41565-024-01830-y. Epub 2025 Jan 2.
4
Intracellular Macromolecular Crowding within Individual Stress Fibers Analyzed by Fluorescence Correlation Spectroscopy.
Cell Mol Bioeng. 2024 Jun 7;17(3):165-176. doi: 10.1007/s12195-024-00803-4. eCollection 2024 Jun.
5
Life under tension: the relevance of force on biological polymers.
Biophys Rep. 2024 Feb 29;10(1):48-56. doi: 10.52601/bpr.2023.230019.
6
7
Studying fluctuating trajectories of optically confined passive tracers inside cells provides familiar active forces.
Biomed Opt Express. 2023 Oct 1;14(10):5440. doi: 10.1364/BOE.499990. Epub 2023 Sep 26.
9
Unravelling 3D Dynamics and Hydrodynamics during Incorporation of Dielectric Particles to an Optical Trapping Site.
ACS Nano. 2023 Feb 28;17(4):3797-3808. doi: 10.1021/acsnano.2c11753. Epub 2023 Feb 17.

本文引用的文献

1
Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells.
Phys Biol. 2013 Aug;10(4):046006. doi: 10.1088/1478-3975/10/4/046006. Epub 2013 Jul 2.
2
Molecular adaptations allow dynein to generate large collective forces inside cells.
Cell. 2013 Jan 17;152(1-2):172-82. doi: 10.1016/j.cell.2012.11.044.
3
Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors.
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18447-52. doi: 10.1073/pnas.1215462109. Epub 2012 Oct 22.
4
5
6
Optimized back-focal-plane interferometry directly measures forces of optically trapped particles.
Opt Express. 2012 May 21;20(11):12270-91. doi: 10.1364/OE.20.012270.
7
Tuning multiple motor travel via single motor velocity.
Traffic. 2012 Sep;13(9):1198-205. doi: 10.1111/j.1600-0854.2012.01385.x. Epub 2012 Jul 3.
8
Casein kinase 2 reverses tail-independent inactivation of kinesin-1.
Nat Commun. 2012 Mar 27;3:754. doi: 10.1038/ncomms1760.
9
Experimental verification of Landauer's principle linking information and thermodynamics.
Nature. 2012 Mar 7;483(7388):187-9. doi: 10.1038/nature10872.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验