Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405.
Instrumentation and Model Facility, University of Vermont, Burlington, VT 05405.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8326-8335. doi: 10.1073/pnas.1901176116. Epub 2019 Apr 9.
The cell's dense 3D actin filament network presents numerous challenges to vesicular transport by teams of myosin Va (MyoVa) molecular motors. These teams must navigate their cargo through diverse actin structures ranging from Arp2/3-branched lamellipodial networks to the dense, unbranched cortical networks. To define how actin filament network organization affects MyoVa cargo transport, we created two different 3D actin networks in vitro. One network was comprised of randomly oriented, unbranched actin filaments; the other was comprised of Arp2/3-branched actin filaments, which effectively polarized the network by aligning the actin filament plus-ends. Within both networks, we defined each actin filament's 3D spatial position using superresolution stochastic optical reconstruction microscopy (STORM) and its polarity by observing the movement of single fluorescent reporter MyoVa. We then characterized the 3D trajectories of fluorescent, 350-nm fluid-like liposomes transported by MyoVa teams (∼10 motors) moving within each of the two networks. Compared with the unbranched network, we observed more liposomes with directed and fewer with stationary motion on the Arp2/3-branched network. This suggests that the modes of liposome transport by MyoVa motors are influenced by changes in the local actin filament polarity alignment within the network. This mechanism was supported by an in silico 3D model that provides a broader platform to understand how cellular regulation of the actin cytoskeletal architecture may fine tune MyoVa-based intracellular cargo transport.
细胞内密集的三维肌动蛋白丝网络给肌球蛋白 Va(MyoVa)分子马达组成的运输小泡团队带来了诸多挑战。这些团队必须将货物运送到各种不同的肌动蛋白结构中,包括 Arp2/3 分支的片状伪足网络和密集的无分支皮质网络。为了定义肌动蛋白丝网络组织如何影响 MyoVa 货物运输,我们在体外创建了两种不同的 3D 肌动蛋白网络。一种网络由随机取向、无分支的肌动蛋白丝组成;另一种网络由 Arp2/3 分支的肌动蛋白丝组成,这些肌动蛋白丝通过排列肌动蛋白丝的正极有效极化了网络。在这两种网络中,我们使用超分辨率随机光学重建显微镜(STORM)来定义每条肌动蛋白丝的三维空间位置,并通过观察单个荧光报告 MyoVa 的运动来定义其极性。然后,我们描述了在这两种网络中的每一种网络内由 MyoVa 团队(约 10 个马达)运输的荧光、350nm 流体样脂质体的三维轨迹。与无分支网络相比,我们在 Arp2/3 分支网络上观察到更多具有定向运动的脂质体,而具有静止运动的脂质体较少。这表明肌球蛋白 Va 马达运输脂质体的方式受到网络内局部肌动蛋白丝极性排列变化的影响。这种机制得到了一个 3D 计算模型的支持,该模型为理解细胞对肌动蛋白细胞骨架结构的调节如何微调基于 MyoVa 的细胞内货物运输提供了更广泛的平台。