Suppr超能文献

基于同源性的蛋白质组学揭示,增强的光合作用和氧化还原能量产生有助于盐生杜氏藻的耐盐性。

Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics.

作者信息

Liska Adam J, Shevchenko Andrej, Pick Uri, Katz Adriana

机构信息

Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.

出版信息

Plant Physiol. 2004 Sep;136(1):2806-17. doi: 10.1104/pp.104.039438. Epub 2004 Aug 27.

Abstract

Salinity is a major limiting factor for the proliferation of plants and inhibits central metabolic activities such as photosynthesis. The halotolerant green alga Dunaliella can adapt to hypersaline environments and is considered a model photosynthetic organism for salinity tolerance. To clarify the molecular basis for salinity tolerance, a proteomic approach has been applied for identification of salt-induced proteins in Dunaliella. Seventy-six salt-induced proteins were selected from two-dimensional gel separations of different subcellular fractions and analyzed by mass spectrometry (MS). Application of nanoelectrospray mass spectrometry, combined with sequence-similarity database-searching algorithms, MS BLAST and MultiTag, enabled identification of 80% of the salt-induced proteins. Salinity stress up-regulated key enzymes in the Calvin cycle, starch mobilization, and redox energy production; regulatory factors in protein biosynthesis and degradation; and a homolog of a bacterial Na(+)-redox transporters. The results indicate that Dunaliella responds to high salinity by enhancement of photosynthetic CO(2) assimilation and by diversion of carbon and energy resources for synthesis of glycerol, the osmotic element in Dunaliella. The ability of Dunaliella to enhance photosynthetic activity at high salinity is remarkable because, in most plants and cyanobacteria, salt stress inhibits photosynthesis. The results demonstrated the power of MS BLAST searches for the identification of proteins in organisms whose genomes are not known and paved the way for dissecting molecular mechanisms of salinity tolerance in algae and higher plants.

摘要

盐度是植物增殖的主要限制因素,并抑制诸如光合作用等核心代谢活动。耐盐绿藻杜氏盐藻能够适应高盐环境,被认为是耐盐性的光合模式生物。为了阐明耐盐性的分子基础,已采用蛋白质组学方法来鉴定杜氏盐藻中盐诱导蛋白。从不同亚细胞组分的二维凝胶分离中选择了76种盐诱导蛋白,并通过质谱(MS)进行分析。应用纳米电喷雾质谱联用序列相似性数据库搜索算法MS BLAST和MultiTag,能够鉴定80%的盐诱导蛋白。盐胁迫上调了卡尔文循环、淀粉动员和氧化还原能量产生中的关键酶;蛋白质生物合成和降解中的调节因子;以及一种细菌Na(+) - 氧化还原转运蛋白的同源物。结果表明,杜氏盐藻通过增强光合CO(2)同化以及将碳和能量资源转移用于合成甘油(杜氏盐藻中的渗透调节物质)来响应高盐度。杜氏盐藻在高盐度下增强光合活性的能力非常显著,因为在大多数植物和蓝细菌中,盐胁迫会抑制光合作用。这些结果证明了MS BLAST搜索在鉴定基因组未知生物中的蛋白质方面的强大作用,并为剖析藻类和高等植物耐盐性的分子机制铺平了道路。

相似文献

9
Dunaliella salina Hsp90 is halotolerant.盐生杜氏藻热休克蛋白90具有耐盐性。
Int J Biol Macromol. 2015 Apr;75:418-25. doi: 10.1016/j.ijbiomac.2015.01.057. Epub 2015 Feb 11.

引用本文的文献

本文引用的文献

7
PLANT CELLULAR AND MOLECULAR RESPONSES TO HIGH SALINITY.植物细胞与分子对高盐度的响应
Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499. doi: 10.1146/annurev.arplant.51.1.463.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验