Suppr超能文献

DNA拓扑异构酶作用的计算分析。

Computational analysis of DNA gyrase action.

作者信息

Vologodskii Alexander

机构信息

New York University, Department of Chemistry, New York, New York 10003, USA.

出版信息

Biophys J. 2004 Nov;87(5):3066-73. doi: 10.1529/biophysj.104.042994. Epub 2004 Aug 31.

Abstract

DNA gyrase introduces negative supercoiling into circular DNA by catalyzing the passage of one DNA segment through another. The efficiency of the reaction is many times higher than that of other topological transformations. We analyze, by a computer simulation, the reaction selectivity for a model of DNA gyrase action that assumes existence of a free loop between the G- and T- DNA segments participating in the reaction. A popular model of this type assumed that the selectivity can be provided by the conformation of the DNA segment wrapped around the enzyme into the right-handed helix turn (G-segment). We simulated the distribution of the reaction products for this model. Equilibrium sets of DNA conformations with one segment of the double helix wrapped around the enzyme were constructed. From these sets we selected conformations that had a second segment properly juxtaposed with the first one. Assuming that the juxtapositions result in the strand-passing reaction, we calculated the reaction products for all these conformations. The results show that different products have to be formed if the enzyme acts according to the model. This conclusion can be extended for any model with a free loop between the G- and T-segments. An alternative model that is consistent with the major experimental observations and the computational analysis, is suggested.

摘要

DNA促旋酶通过催化一个DNA片段穿过另一个片段,将负超螺旋引入环状DNA。该反应的效率比其他拓扑转变的效率高出许多倍。我们通过计算机模拟,分析了一个假设在参与反应的G段和T段DNA之间存在自由环的DNA促旋酶作用模型的反应选择性。这种类型的一个流行模型假设,选择性可以由缠绕在酶上形成右手螺旋圈的DNA片段(G段)的构象提供。我们模拟了该模型的反应产物分布。构建了双螺旋的一段缠绕在酶上的DNA构象平衡集。从这些集合中,我们选择了第二段与第一段正确并列的构象。假设并列会导致链穿过反应,我们计算了所有这些构象的反应产物。结果表明,如果酶按照该模型起作用,就必须形成不同的产物。这一结论可以推广到任何在G段和T段之间有自由环的模型。本文提出了一个与主要实验观察结果和计算分析相一致的替代模型。

相似文献

1
Computational analysis of DNA gyrase action.
Biophys J. 2004 Nov;87(5):3066-73. doi: 10.1529/biophysj.104.042994. Epub 2004 Aug 31.
2
The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
DNA Repair (Amst). 2014 Apr;16:23-34. doi: 10.1016/j.dnarep.2014.01.011. Epub 2014 Feb 22.
3
The DNA-gate of Bacillus subtilis gyrase is predominantly in the closed conformation during the DNA supercoiling reaction.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13278-83. doi: 10.1073/pnas.0902493106. Epub 2009 Jul 29.
4
Locking the ATP-operated clamp of DNA gyrase: probing the mechanism of strand passage.
J Mol Biol. 2001 Mar 9;306(5):969-84. doi: 10.1006/jmbi.2001.4468.
5
Computational analysis of the chiral action of type II DNA topoisomerases.
J Mol Biol. 2002 Jul 5;320(2):359-67. doi: 10.1016/S0022-2836(02)00447-3.
6
DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14085-90. doi: 10.1073/pnas.1102100108. Epub 2011 Aug 4.
8
E. coli Gyrase Fails to Negatively Supercoil Diaminopurine-Substituted DNA.
J Mol Biol. 2015 Jul 3;427(13):2305-18. doi: 10.1016/j.jmb.2015.04.006. Epub 2015 Apr 19.
9
Guiding strand passage: DNA-induced movement of the gyrase C-terminal domains defines an early step in the supercoiling cycle.
Nucleic Acids Res. 2011 Dec;39(22):9681-94. doi: 10.1093/nar/gkr680. Epub 2011 Aug 31.
10
A complex of DNA gyrase and RNA polymerase fosters transcription in Mycobacterium smegmatis.
Biochem Biophys Res Commun. 2006 May 19;343(4):1141-5. doi: 10.1016/j.bbrc.2006.02.195. Epub 2006 Mar 31.

本文引用的文献

1
The C-terminal domain of DNA gyrase A adopts a DNA-bending beta-pinwheel fold.
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7293-8. doi: 10.1073/pnas.0401595101. Epub 2004 May 3.
2
Nucleotide binding to DNA gyrase causes loss of DNA wrap.
J Mol Biol. 2004 Mar 26;337(3):597-610. doi: 10.1016/j.jmb.2004.01.049.
3
Symmetric DNA sites are functionally asymmetric within Flp and Cre site-specific DNA recombination synapses.
J Mol Biol. 2002 Jul 12;320(3):515-27. doi: 10.1016/s0022-2836(02)00517-x.
4
Computational analysis of the chiral action of type II DNA topoisomerases.
J Mol Biol. 2002 Jul 5;320(2):359-67. doi: 10.1016/S0022-2836(02)00447-3.
5
Contribution of the intrinsic curvature to measured DNA persistence length.
J Mol Biol. 2002 Mar 22;317(2):205-13. doi: 10.1006/jmbi.2001.5366.
6
Mechanism of topology simplification by type II DNA topoisomerases.
Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3045-9. doi: 10.1073/pnas.061029098.
7
A model for the mechanism of strand passage by DNA gyrase.
Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8414-9. doi: 10.1073/pnas.96.15.8414.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验