Suppr超能文献

蛋白质突变体稳定性的计算建模:统计势和结构特征的分析与优化为预测模型开发提供了见解。

Computational modeling of protein mutant stability: analysis and optimization of statistical potentials and structural features reveal insights into prediction model development.

作者信息

Parthiban Vijaya, Gromiha M Michael, Abhinandan Madenhalli, Schomburg Dietmar

机构信息

Cologne University Bioinformatics Center, International Max Planck Research School, Cologne, Germany.

出版信息

BMC Struct Biol. 2007 Aug 16;7:54. doi: 10.1186/1472-6807-7-54.

Abstract

BACKGROUND

Understanding and predicting protein stability upon point mutations has wide-spread importance in molecular biology. Several prediction models have been developed in the past with various algorithms. Statistical potentials are one of the widely used algorithms for the prediction of changes in stability upon point mutations. Although the methods provide flexibility and the capability to develop an accurate and reliable prediction model, it can be achieved only by the right selection of the structural factors and optimization of their parameters for the statistical potentials. In this work, we have selected five atom classification systems and compared their efficiency for the development of amino acid atom potentials. Additionally, torsion angle potentials have been optimized to include the orientation of amino acids in such a way that altered backbone conformation in different secondary structural regions can be included for the prediction model. This study also elaborates the importance of classifying the mutations according to their solvent accessibility and secondary structure specificity. The prediction efficiency has been calculated individually for the mutations in different secondary structural regions and compared.

RESULTS

Results show that, in addition to using an advanced atom description, stepwise regression and selection of atoms are necessary to avoid the redundancy in atom distribution and improve the reliability of the prediction model validation. Comparing to other atom classification models, Melo-Feytmans model shows better prediction efficiency by giving a high correlation of 0.85 between experimental and theoretical Delta Delta G with 84.06% of the mutations correctly predicted out of 1538 mutations. The theoretical Delta Delta G values for the mutations in partially buried beta-strands generated by the structural training dataset from PISCES gave a correlation of 0.84 without performing the Gaussian apodization of the torsion angle distribution. After the Gaussian apodization, the correlation increased to 0.92 and prediction accuracy increased from 80% to 88.89% respectively.

CONCLUSION

These findings were useful for the optimization of the Melo-Feytmans atom classification system and implementing them to develop the statistical potentials. It was also significant that the prediction efficiency of mutations in the partially buried beta-strands improves with the help of Gaussian apodization of the torsion angle distribution. All these comparisons and optimization techniques demonstrate their advantages as well as the restrictions for the development of the prediction model. These findings will be quite helpful not only for the protein stability prediction, but also for various structure solutions in future.

摘要

背景

理解和预测点突变后的蛋白质稳定性在分子生物学中具有广泛的重要性。过去已经开发了几种采用不同算法的预测模型。统计势是用于预测点突变后稳定性变化的广泛使用的算法之一。尽管这些方法提供了灵活性以及开发准确可靠预测模型的能力,但只有通过正确选择结构因素并优化其统计势参数才能实现。在这项工作中,我们选择了五种原子分类系统,并比较了它们在开发氨基酸原子势方面的效率。此外,对扭转角势进行了优化,以纳入氨基酸的取向,从而可以将不同二级结构区域中改变的主链构象纳入预测模型。本研究还阐述了根据突变的溶剂可及性和二级结构特异性进行分类的重要性。分别计算了不同二级结构区域中突变的预测效率并进行了比较。

结果

结果表明,除了使用先进的原子描述外,逐步回归和原子选择对于避免原子分布冗余和提高预测模型验证的可靠性是必要的。与其他原子分类模型相比,Melo - Feytmans模型显示出更好的预测效率,实验和理论ΔΔG之间的相关性高达0.85,在1538个突变中正确预测了84.06%的突变。由PISCES的结构训练数据集生成的部分埋藏β链中突变的理论ΔΔG值在未对扭转角分布进行高斯切趾处理时相关性为0.84。经过高斯切趾处理后,相关性提高到0.92,预测准确率分别从80%提高到88.89%。

结论

这些发现有助于优化Melo - Feytmans原子分类系统并将其用于开发统计势。同样重要的是,部分埋藏β链中突变的预测效率在扭转角分布的高斯切趾处理的帮助下得到了提高。所有这些比较和优化技术展示了它们在开发预测模型方面的优势以及局限性。这些发现不仅对蛋白质稳定性预测有很大帮助,而且对未来的各种结构解析也将非常有帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f13/2000882/54967208c563/1472-6807-7-54-1.jpg

相似文献

6
Prediction of protein mutant stability using classification and regression tool.
Biophys Chem. 2007 Feb;125(2-3):462-70. doi: 10.1016/j.bpc.2006.10.009. Epub 2006 Nov 20.
8
Statistical and molecular dynamics studies of buried waters in globular proteins.
Proteins. 2005 Aug 15;60(3):450-63. doi: 10.1002/prot.20511.
9
The elastic net algorithm and protein structure prediction.
J Comput Chem. 2002 Jan 15;23(1):77-83. doi: 10.1002/jcc.1158.
10
Robust prediction of mutation-induced protein stability change by property encoding of amino acids.
Protein Eng Des Sel. 2009 Feb;22(2):75-83. doi: 10.1093/protein/gzn063. Epub 2008 Dec 2.

引用本文的文献

5
Protein Arginine Methyltransferase 5 (PRMT5) Mutations in Cancer Cells.
Int J Mol Sci. 2023 Mar 23;24(7):6042. doi: 10.3390/ijms24076042.
6
Computational Exploration and Characterization of Potential Calcium Sensitizing Mutations in Cardiac Troponin C.
J Chem Inf Model. 2022 Dec 12;62(23):6201-6208. doi: 10.1021/acs.jcim.2c01132. Epub 2022 Nov 16.
7
VIPdb, a genetic Variant Impact Predictor Database.
Hum Mutat. 2019 Sep;40(9):1202-1214. doi: 10.1002/humu.23858. Epub 2019 Aug 17.

本文引用的文献

2
CUPSAT: prediction of protein stability upon point mutations.
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W239-42. doi: 10.1093/nar/gkl190.
4
Predicting protein stability changes from sequences using support vector machines.
Bioinformatics. 2005 Sep 1;21 Suppl 2:ii54-8. doi: 10.1093/bioinformatics/bti1109.
5
Prediction of protein thermostability with a direction- and distance-dependent knowledge-based potential.
Protein Sci. 2005 Oct;14(10):2682-92. doi: 10.1110/ps.04940705. Epub 2005 Sep 9.
6
I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W306-10. doi: 10.1093/nar/gki375.
9
Inter-residue interactions in protein folding and stability.
Prog Biophys Mol Biol. 2004 Oct;86(2):235-77. doi: 10.1016/j.pbiomolbio.2003.09.003.
10
A neural-network-based method for predicting protein stability changes upon single point mutations.
Bioinformatics. 2004 Aug 4;20 Suppl 1:i63-8. doi: 10.1093/bioinformatics/bth928.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验