Suppr超能文献

用于研究电催化的核磁共振方法。

NMR methods for studying electrocatalysis.

作者信息

Zhu Zhiyu, Luo Ruipeng, Zhao Evan Wenbo

机构信息

Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, the Netherlands.

出版信息

Magn Reson Lett. 2024 Jan 8;4(2):100096. doi: 10.1016/j.mrl.2023.12.004. eCollection 2024 May.

Abstract

The combination of electrochemical measurements with spectroscopic characterizations provides valuable insights into reaction mechanisms. Nuclear magnetic resonance (NMR) spectroscopy, as a powerful technique due to its atomic specificity and versatility in studying gas, liquid, and solid, allows the study of electrolyte solution, catalyst and catalyst-adsorbate interfaces. When applied in , NMR can offer molecular-level insights into various electrochemical processes. NMR has been applied extensively in battery research, but relatively underexplored for electrocatalysis in the past two decades. In this mini review, we first introduce the electrochemical NMR setups, categorized by different probe designs. Then we review the applications of NMR for monitoring the electrolyte solution and the catalyst-adsorbate interface. Considering the high environmental impact of electrochemical conversion of CO into value-added products, we zoom in to the use of NMR in studying electrochemical CO reduction. Finally, we provide our perspective on further developing and applying NMR methods for understanding the complex reaction network of Cu-catalyzed electrochemical CO reduction.

摘要

电化学测量与光谱表征相结合能为反应机理提供有价值的见解。核磁共振(NMR)光谱作为一种强大的技术,因其原子特异性以及在研究气体、液体和固体方面的通用性,可用于研究电解质溶液、催化剂及催化剂 - 吸附质界面。当应用于[具体情境未给出]时,NMR能够为各种电化学过程提供分子层面的见解。NMR已在电池研究中得到广泛应用,但在过去二十年里,其在电催化方面的研究相对较少。在本综述中,我们首先介绍按不同探针设计分类的电化学NMR装置。然后我们回顾NMR在监测电解质溶液和催化剂 - 吸附质界面方面的应用。鉴于将CO电化学转化为增值产品对环境影响较大,我们重点关注NMR在研究电化学CO还原中的应用。最后,我们就进一步开发和应用NMR方法以理解铜催化电化学CO还原的复杂反应网络提出我们的观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c5a/12406576/309bbea3e3e3/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验