Suppr超能文献

基于概率蒙特卡洛方法利用全脑交叉纤维信息绘制脑连接图谱。

Probabilistic Monte Carlo based mapping of cerebral connections utilising whole-brain crossing fibre information.

作者信息

Parker Geoff J M, Alexander Daniel C

机构信息

Imaging Science & Biomedical Engineering, University of Manchester, Manchester M13 9PT, UK.

出版信息

Inf Process Med Imaging. 2003 Jul;18:684-95. doi: 10.1007/978-3-540-45087-0_57.

Abstract

A methodology is presented for estimation of a probability density function of cerebral fibre orientations when one or two fibres are present in a voxel. All data are acquired on a clinical MR scanner, using widely available acquisition techniques. The method models measurements of water diffusion in a single fibre by a Gaussian density function and in multiple fibres by a mixture of Gaussian densities. The effects of noise on complex MR diffusion weighted data are explicitly simluated and parameterised. This information is used for standard and Monte Carlo streamline methods. Deterministic and probabilistic maps of anatomical voxel scale connectivity between brain regions are generated.

摘要

本文提出了一种方法,用于估计当一个体素中存在一或两根纤维时脑纤维方向的概率密度函数。所有数据均在临床磁共振成像(MR)扫描仪上采集,采用广泛可用的采集技术。该方法通过高斯密度函数对单根纤维中的水扩散测量进行建模,并通过高斯密度混合对多根纤维中的水扩散测量进行建模。明确模拟并参数化了噪声对复杂MR扩散加权数据的影响。这些信息用于标准和蒙特卡洛流线方法。生成了脑区之间解剖体素尺度连通性的确定性和概率性图谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验