Tran Giang, Shi Yonggang
IEEE Trans Med Imaging. 2015 Nov;34(11):2320-32. doi: 10.1109/TMI.2015.2430850. Epub 2015 May 7.
Diffusion MRI offers the unique opportunity of assessing the structural connections of human brains in vivo. With the advance of diffusion MRI technology, multi-shell imaging methods are becoming increasingly practical for large scale studies and clinical application. In this work, we propose a novel method for the analysis of multi-shell diffusion imaging data by incorporating compartment models into a spherical deconvolution framework for fiber orientation distribution (FOD) reconstruction. For numerical implementation, we develop an adaptively constrained energy minimization approach to efficiently compute the solution. On simulated and real data from Human Connectome Project (HCP), we show that our method not only reconstructs sharp and clean FODs for the modeling of fiber crossings, but also generates reliable estimation of compartment parameters with great potential for clinical research of neurological diseases. In comparisons with publicly available DSI-Studio and BEDPOSTX of FSL, we demonstrate that our method reconstructs sharper FODs with more precise estimation of fiber directions. By applying probabilistic tractography to the FODs computed by our method, we show that more complete reconstruction of the corpus callosum bundle can be achieved. On a clinical, two-shell diffusion imaging data, we also demonstrate the feasibility of our method in analyzing white matter lesions.
扩散磁共振成像(Diffusion MRI)为在体评估人类大脑的结构连接提供了独特的机会。随着扩散磁共振成像技术的发展,多壳层成像方法在大规模研究和临床应用中变得越来越实用。在这项工作中,我们提出了一种新的方法来分析多壳层扩散成像数据,即将房室模型纳入用于纤维取向分布(FOD)重建的球面反卷积框架中。对于数值实现,我们开发了一种自适应约束能量最小化方法来有效地计算解决方案。在来自人类连接组计划(HCP)的模拟数据和真实数据上,我们表明我们的方法不仅为纤维交叉建模重建了清晰干净的FOD,而且还生成了可靠的房室参数估计,在神经疾病的临床研究中具有巨大潜力。与公开可用的DSI-Studio和FSL的BEDPOSTX相比,我们证明我们的方法重建的FOD更清晰,对纤维方向的估计更精确。通过将概率性纤维束成像应用于我们的方法计算出的FOD,我们表明可以实现胼胝体束更完整的重建。在临床的双壳层扩散成像数据上,我们还证明了我们的方法在分析白质病变方面的可行性。