Suppr超能文献

一种用于关联北卡罗来纳州细颗粒物(PM2.5)暴露与心血管疾病死亡率的贝叶斯分层方法。

A Bayesian hierarchical approach for relating PM(2.5) exposure to cardiovascular mortality in North Carolina.

作者信息

Holloman Christopher H, Bortnick Steven M, Morara Michele, Strauss Warren J, Calder Catherine A

机构信息

Statistics and Data Analysis Systems, Battelle Memorial Institute, Columbus, Ohio 43201-2693, USA.

出版信息

Environ Health Perspect. 2004 Sep;112(13):1282-8. doi: 10.1289/ehp.6980.

Abstract

Considerable attention has been given to the relationship between levels of fine particulate matter (particulate matter < or = 2.5 microm in aerodynamic diameter; PM(2.5) in the atmosphere and health effects in human populations. Since the U.S. Environmental Protection Agency began widespread monitoring of PM(2.5) levels in 1999, the epidemiologic community has performed numerous observational studies modeling mortality and morbidity responses to PM(2.5) levels using Poisson generalized additive models (GAMs). Although these models are useful for relating ambient PM(2.5) levels to mortality, they cannot directly measure the strength of the effect of exposure to PM(2.5) on mortality. In order to assess this effect, we propose a three-stage Bayesian hierarchical model as an alternative to the classical Poisson GAM. Fitting our model to data collected in seven North Carolina counties from 1999 through 2001, we found that an increase in PM(2.5) exposure is linked to increased risk of cardiovascular mortality in the same day and next 2 days. Specifically, a 10- microg/m3 increase in average PM(2.5) exposure is associated with a 2.5% increase in the relative risk of current-day cardiovascular mortality, a 4.0% increase in the relative risk of cardiovascular mortality the next day, and an 11.4% increase in the relative risk of cardiovascular mortality 2 days later. Because of the small sample size of our study, only the third effect was found to have > 95% posterior probability of being > 0. In addition, we compared the results obtained from our model to those obtained by applying frequentist (or classical, repeated sampling-based) and Bayesian versions of the classical Poisson GAM to our study population.

摘要

细颗粒物(空气动力学直径小于或等于2.5微米的颗粒物;大气中的PM2.5)水平与人群健康影响之间的关系已受到广泛关注。自美国环境保护局于1999年开始广泛监测PM2.5水平以来,流行病学领域开展了大量观察性研究,使用泊松广义相加模型(GAMs)对PM2.5水平与死亡率和发病率的关系进行建模。尽管这些模型有助于将环境中的PM2.5水平与死亡率联系起来,但它们无法直接衡量接触PM2.5对死亡率影响的强度。为了评估这种影响,我们提出了一种三阶段贝叶斯层次模型,作为经典泊松GAM的替代方法。将我们的模型应用于1999年至2001年在北卡罗来纳州七个县收集的数据,我们发现PM2.5暴露增加与当日及随后两天心血管死亡率风险增加有关。具体而言,平均PM2.5暴露每增加10微克/立方米,当日心血管死亡率的相对风险增加2.5%,次日心血管死亡率的相对风险增加4.0%,两天后心血管死亡率的相对风险增加11.4%。由于我们研究的样本量较小,仅发现第三种影响的后验概率大于0的概率超过95%。此外,我们将我们模型得到的结果与通过将经典泊松GAM的频率主义(或基于经典重复抽样)版本和贝叶斯版本应用于我们的研究人群所得到的结果进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53bf/1247517/d7da8f672dd6/ehp0112-001282f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验