Suppr超能文献

通过转录谱分析鉴别不同类别的毒物。

Discriminating different classes of toxicants by transcript profiling.

作者信息

Steiner Guido, Suter Laura, Boess Franziska, Gasser Rodolfo, de Vera Maria Cristina, Albertini Silvio, Ruepp Stefan

机构信息

Non-Clinical Drug Safety, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

出版信息

Environ Health Perspect. 2004 Aug;112(12):1236-48. doi: 10.1289/txg.7036.

Abstract

Male rats were treated with various model compounds or the appropriate vehicle controls. Most substances were either well-known hepatotoxicants or showed hepatotoxicity during preclinical testing. The aim of the present study was to determine if biological samples from rats treated with various compounds can be classified based on gene expression profiles. In addition to gene expression analysis using microarrays, a complete serum chemistry profile and liver and kidney histopathology were performed. We analyzed hepatic gene expression profiles using a supervised learning method (support vector machines; SVMs) to generate classification rules and combined this with recursive feature elimination to improve classification performance and to identify a compact subset of probe sets with potential use as biomarkers. Two different SVM algorithms were tested, and the models obtained were validated with a compound-based external cross-validation approach. Our predictive models were able to discriminate between hepatotoxic and nonhepatotoxic compounds. Furthermore, they predicted the correct class of hepatotoxicant in most cases. We provide an example showing that a predictive model built on transcript profiles from one rat strain can successfully classify profiles from another rat strain. In addition, we demonstrate that the predictive models identify nonresponders and are able to discriminate between gene changes related to pharmacology and toxicity. This work confirms the hypothesis that compound classification based on gene expression data is feasible.

摘要

雄性大鼠用各种模型化合物或相应的载体对照进行处理。大多数物质要么是众所周知的肝毒性物质,要么在临床前试验中表现出肝毒性。本研究的目的是确定用各种化合物处理的大鼠的生物样品是否可以根据基因表达谱进行分类。除了使用微阵列进行基因表达分析外,还进行了完整的血清化学分析以及肝脏和肾脏组织病理学检查。我们使用监督学习方法(支持向量机;SVM)分析肝脏基因表达谱以生成分类规则,并将其与递归特征消除相结合以提高分类性能,并识别出具有作为生物标志物潜在用途的紧凑探针集子集。测试了两种不同的SVM算法,并使用基于化合物的外部交叉验证方法对获得的模型进行了验证。我们的预测模型能够区分肝毒性和非肝毒性化合物。此外,它们在大多数情况下预测出了正确的肝毒性物质类别。我们提供了一个例子,表明基于一种大鼠品系的转录谱构建的预测模型可以成功地对另一种大鼠品系的谱进行分类。此外,我们证明预测模型能够识别无反应者,并能够区分与药理学和毒性相关的基因变化。这项工作证实了基于基因表达数据进行化合物分类是可行的这一假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64c2/1277117/2003e4554cf6/ehp0112-001236f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验